

An Intelligent Scanning Vehicle for Waste Collection Monitoring

G. Waltner¹, M. Jaschik², A. Rinnhofer², H. Possegger¹, H. Bischof¹

¹ Institute of Computer Graphics and Vision, Graz University of Technology

² JOANNEUM RESEARCH Forschungsgesellschaft mbH

Fight Climate Change

Fight climate change by reducing greenhouse gas emissions

- Many initiatives:
 UN Agenda 2030 for Sustainable Development,
 European Green Deal, etc.
- Waste management causes considerable emissions
- Goal: Increase recycling rates & avoid waste

Our innovative garbage truck:

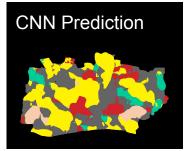
- Assesses composition of residential waste in real-time
- Delivers individual feedback to improve recycling rates

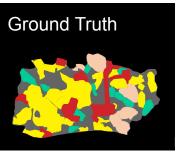
longer lasting products that can be repaired, recycled and re-used

[EU Green Deal]

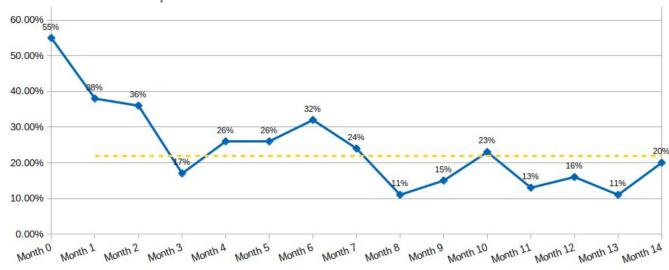
cleaner energy and cutting-edge clean technological innovation

Avoid Waste to Increase Recycling Quotes





Awareness Reduces Waste Contamination

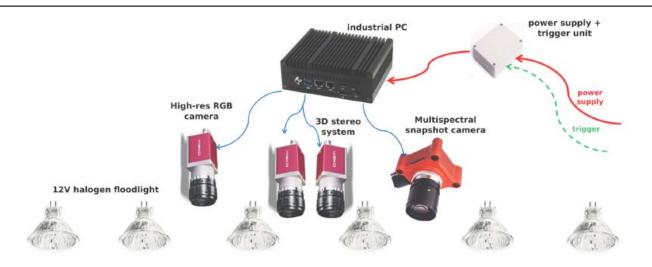


Evaluation period of 14 months with 40 households

Due to immediate feedback, households improved waste separation rates by ~30%

Proportion of **contaminants in residual waste**:

Overview Approach



- Modern garbage truck equipped with complex hardware.
 - Multiple modalities: rgb, stereo and multispectral cameras.
 - GSM module for localization
 - Rugged and sealed metal casing.
- SOTA image recognition software deployed in the cloud.
 - Secure connection for safe data transfer.
 - Scalable cloud orchestration depending on workload.
 - AI model with human-like performance.
- Direct feedback to the households for change in behavior.
 - App or SMS notifications.
 - Informative text about the waste distribution along with hints on how to improve.
 - Long-time monitoring for improved community waste management.

Hardware

Custom-designed hardware system with external trigger.

- RGB camera: High resolution rgb camera for capturing details in shape and appearance.
- Multispectral camera: Multi-channel camera in visible spectrum and near-infrared for capturing information in extended wavelength ranges.
- Stero system: Two grayscale cameras for depth perception.
- Halogen floodlights: For uniform illumination across the recorded area.
- Industrial PC: Recording unit capable to work in vibrating and temperature-critic environments.

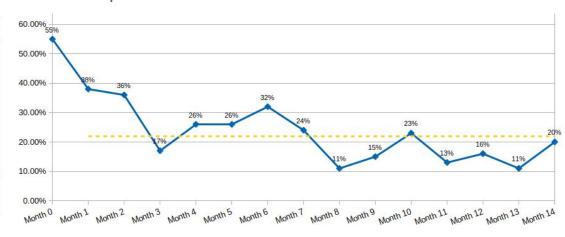
Dataset

Dataset of 3000+ labeled images collected over 14 months.

- Manual segmentation labels collected for 3107 images (2908 train, 60 val, 139 test).
- Collection over more than 14 months to incorporate seasonal fluctuations.
- 6 dominant waste categories: organic, garbage_bag, paper, PET, plastic and residual.

class	img count	img area (mean±std) [%]	img area range [%]
background	2908/2908	71.67 ± 9.77	0.61 - 93.86
ignore	1882/2908	2.68 ± 5.65	0.00 - 67.06
organic	956/2908	1.79 ± 4.27	0.00 - 39.39
$garbage_bag$	2364/2908	6.92 ± 5.42	0.00 - 49.07
paper	2449/2908	2.04 ± 2.39	0.00 - 18.85
pet	1787/2908	0.62 ± 0.77	0.00 - 9.67
plastic	2844/2908	6.57 ± 5.33	0.00 - 33.91
residual	2908/2908	11.85 ± 5.29	5.02 - 58.13
	<u>.</u>	a) train	<u>.</u>
background	139/139	68.85 ± 10.21	39.03 - 100.00
ignore	72/139	1.78 ± 2.16	0.00 - 10.21
organic	96/139	19.84 ± 16.05	0.03 - 58.46
$garbage_bag$	93/139	6.39 ± 5.31	0.05 - 23.51
paper	82/139	3.10 ± 2.83	0.04 - 13.99
pet	59/139	0.87 ± 0.89	0.08 - 4.77
plastic	90/139	6.46 ± 5.08	0.05 - 32.46
residual	112/139	7.30 ± 6.47	0.00 - 35.78
		b) test	

Results



Accuracy & IoU on the test set.

w: weighted by covered area (instead of averaging over all classes)

class	ACC	IOU
background	98.35 ± 3.62	96.03 ± 5.15
organic	56.86 ± 35.91	53.24 ± 33.64
$garbage_bag$	68.42 ± 28.26	54.66 ± 26.24
paper	50.36 ± 28.77	40.13 ± 24.69
pet	35.61 ± 25.80	27.56 ± 20.60
plastic	49.97 ± 22.05	38.81 ± 18.80
residual	67.26 ± 26.01	40.32 ± 22.71
average	53.36 ± 26.55	43.84 ± 25.41
$average^{w}$	82.77 ± 14.06	$\textbf{77.22} \pm \textbf{13.93}$

Proportion of contaminants in residual waste:

