

Unsupervised Calibration of Camera Networks and Virtual PTZ Cameras

Horst Possegger, Matthias Rüther, Sabine Sternig, Thomas Mauthner, Manfred Klopschitz, Peter M. Roth, Horst Bischof

Motivation

[Video]

Outline

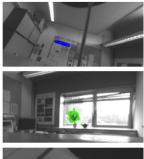
- Virtual PTZ
- Unsupervised Calibration
- Experimental Results
- Conclusion

Related Work – Virtual Cameras

- Virtual vision approach [1]
 - Synthetic camera network
 - Virtual 3D environment
 - Modelling realistic human behaviour is complex

[1] F. Qureshi and D. Terzopoulos. Surveillance Camera Scheduling: A Virtual Vision Approach. *Multimedia Systems*, 12(3), 2006.

Horst Possegger



Related Work – Virtual Cameras

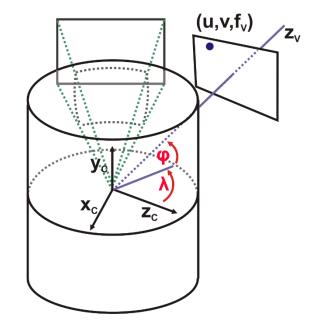
- Perspective views from omnidirectional images
 - Ishiguro et al. [1]
 - Approximate plenoptic representations
 - Visual modeling
 - Mauthner et al. [2]
 - Virtual camera planes for feature extraction
 - Region matching

[2]

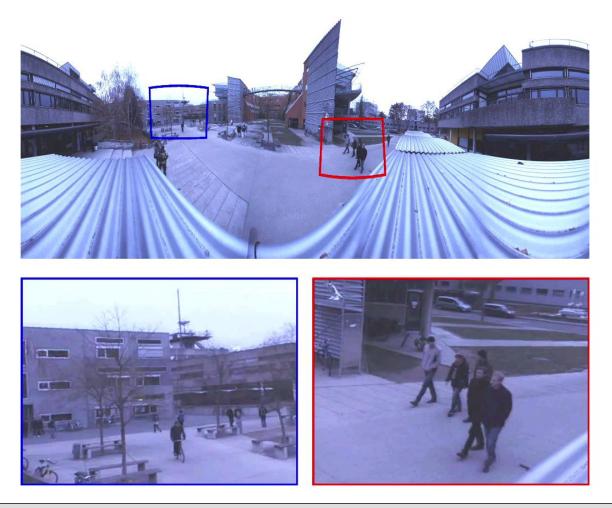
- Wu et al. [3]
 - Viewpoint invariant feature descriptors
 - 3D scene alignment
- [1] H. Ishiguro, K. Ng, R. Capella, and M. Trivedi. Omnidirectional image-based modeling: three approaches to approximated plenoptic representations. *MVA*, 14(2), 2003.
- [2] T. Mauthner, F. Fraundorfer, and H. Bischof. Region matching for omnidirectional images using virtual camera planes. *Proc. CVWW*, 2006.
- [3] C. Wu, B. Clipp, X. Li, J.-M. Frahm, M. Pollefeys. 3D Model Matching with Viewpoint-Invariant Patches (VIP). *Proc.* CVPR, 2008.

From Panoramic Imagery ...

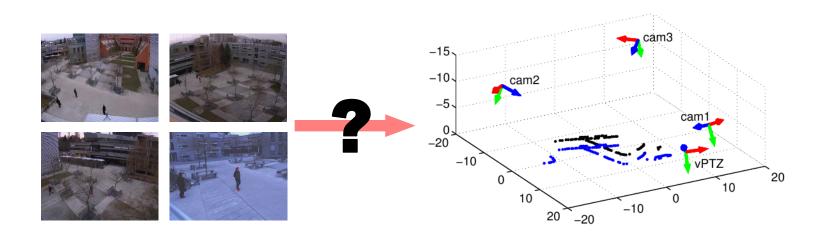
- Image stitching [1]
 - Compute 3D ray
 - Intersect with cylinder
 - Map onto flat surface
- Panoramic video
 - Spherical camera
 - *E.g.* Point Grey Ladybug3 with 6 sensors, 2 MP each

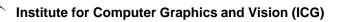

[1] R. Szeliski. Image Alignment and Stitching: A Tutorial. *FTCGV*, 2(1), 2006.

... to Virtual PTZ


- Virtual pinhole camera meets panorama projection
 - Optical center coincides with the center of the cylinder
 - Resample virtual image plane using panorama
- Simulate a PTZ camera off-line
 - Pan/tilt almost arbitrarily
 - Pan Rotation around *y*-axis
 - Tilt Rotation around *x*-axis
 - Zoom by changing the focal length

Virtual PTZ


[Video]



Unsupervised Calibration

- Motivation
 - Camera network of static and PTZ cameras
 - Extrinsic calibration necessary
 - Simple to use
 - Simplify development using vPTZ

Related Work – Self-Calibration

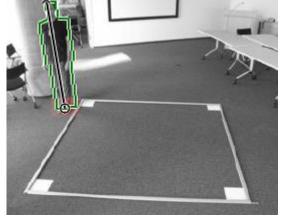
- Point correspondences from moving objects
 - Lee *et al.* [1]
 - Centroids of moving objects
 - Additional refinement steps
 - Lv et al. [2]
 - Vanishing points
 - Estimated from pedestrians
 - Sensitive to noise

[KM06]

- Krahnstoever and Mendonça [3]
 - Statistical model of human motion
 - Reduces noise sensitivity

[1] L. Lee, R. Romano, G. Stein. Monitoring Activities from Multiple Video Streams: Establishing a Common Coordinate Frame. *PAMI*, 22(8), 2000.

[2] F. Lv, T. Zhao, and R. Nevatia. Self-Calibration of a camera from video of a walking human. *Proc. ICPR*, 2002.

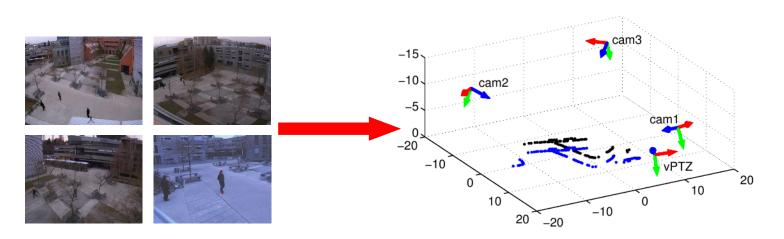

[3] N. Krahnstoever and P. Mendonça. Autocalibration from Tracks of Walking People. Proc. BMVC, 2006.

Related Work – Self-Calibration

- Puwein *et al.* [1]
 - Network of PTZ cameras
 - Geometric constraints from foot trajectories
 of soccer players
 - Refinement via detected field lines
- Micusik and Pajdla [2]
 - Simultaneous calibration and foot-head homology estimation
 - Silhouette imagery of a synthetic 3D model
 - Human needs to stand still

[MP10]

- [1] B. Micusik and T. Pajdla. Simultaneous surveillance camera calibration and foot-head homology estimation from human detections. *Proc. CVPR*, 2010.
- [2] J. Puwein, R. Ziegler, L. Ballan, and M. Pollefeys. PTZ Camera Network Calibration from Moving People in Sports Broadcasts. *Proc. WACV*, 2012.

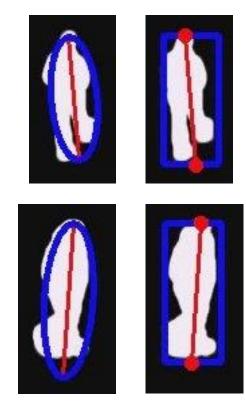

Horst Possegger

Self-Calibration Method

- Track pedestrian
 - Extract point correspondences
 - Remove outliers
- Modified Bundle Adjustment

Detecting Head and Foot Locations

- Adaptive background models
 - Intensities and HSV in parallel
 - Combination reduces
 - Weak reflections
 - Penumbras (soft shadows)
- Blob tracking
 - Size similarity
 - Spatial proximity


Intensity Saturation

Detecting Head and Foot Locations

- Ellipse fitting
 - Corresponding foreground blob
 - Eigenanalysis of covariance matrix
 - First eigenvector axis upright
 - Intersect eigenvector axis with minimum bounding box
- Outlier Removal
 - Pairwise homographies
 - RANSAC
 - Intersection of consensus sets

Reprojection Errors

- Static cameras [1]
 - Normalized camera $\hat{P} = [R|t], \quad x = \hat{P}X$
 - Normalize image measurements using known intrinsics

 Reprojection error for static camera j

 $E^s = \|x_j - \hat{P}_j X\|^2$

- (v)PTZ
 - Pan/tilt/zoom parameters
 - Spherical camera coordinate system
 - Image measurements $(\omega,\psi)^{\top}$
 - 3D world points $(\Omega, \Psi)^{\top}$
- Reprojection error for (v)PTZ camera

 $E^d = \|(\omega,\psi)^\top - (\Omega,\Psi)^\top\|^2$

[1] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, 2nd ed., 2004.

Camera Calibration

- Non-linear least squares optimization problem
 - Static cameras N_s
 - (v)PTZ cameras N_d

$$\arg_{R_{j},t_{j},a_{i},b_{i}} \min \sum_{j \in N_{s},i} E_{i,j}^{s} + \sum_{j \in N_{d},i} E_{i,j}^{d}$$
$$E_{i,j}^{s} = \|x_{i,j} - \hat{P}_{j}X_{i}\|^{2}$$
$$E_{i,j}^{d} = \|(\omega_{i,j},\psi_{i,j})^{\top} - (\Omega_{i,j},\Psi_{i,j})^{\top}\|^{2}$$

- Solution using iterative Levenberg-Marquardt
 - Initialized without knowledge of real positions
 - Sufficiently accurate estimates

Experiments

- Outdoor
 - 3 static Axis P1347
 - 1 Point Grey Ladybug3
- Indoor
 - 4 static Axis P1347
 - 1 Point Grey Ladybug3

 Data sets publicly available http://lrs.icg.tugraz.at/download.php#vptz

Results

- Evaluation
 - Project known points onto ground plane
 - Compare distance measurements
 - Lengths between 0.5 and 6.0 meters (outdoor)
 - Lengths between 3.6 and 5.1 meters (indoor)

Mean reprojection errors [%]					
Data set	Camera				
	1	2	3	4	vPTZ
Outdoor	2.8	3.7	12.0	n.a.	4.5
Indoor	3.8	2.9	4.4	2.4	5.8

Conclusion

- Virtual PTZ
 - Panoramic imagery
 - Simulate a real PTZ camera off-line
 - Simplifies development
- Camera network calibration
 - Extrinsic parameters
 - Correspondences from a walking human
 - Sufficiently accurate estimates
- Future work
 - Multiple object tracking
 - Controlling (v)PTZ cameras

Thank you for your attention

Unsupervised Calibration of Camera Networks and Virtual PTZ Cameras

Horst Possegger, Matthias Rüther, Sabine Sternig, Thomas Mauthner, Manfred Klopschitz, Peter M. Roth, Horst Bischof

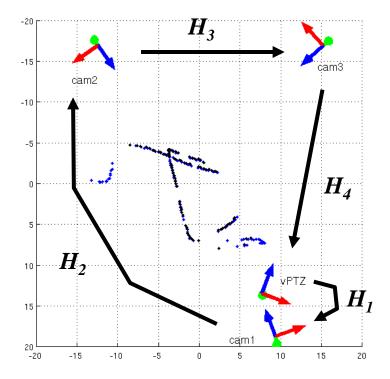
Institute for Computer Graphics and Vision Graz University of Technology

Data sets & sample implementation publicly available http://lrs.icg.tugraz.at/download.php#vptz

[Video]

Sample Views

Horst Possegger



0

Outlier Removal

- Pairwise homographies
 - N camera pairs
 - RANSAC
 - Intersection of consensus sets
- Maximum set
 - Spatially neighboring cameras
 - Slightly improves results

RE – Static Cameras

• 3D foot and head points

$$X = (a, b, 0, 1)^{\top}, \quad X = (a, b, h, 1)^{\top}$$

- Pixel-based reprojection error [HZ04]
 - Normalized camera *j*
 - Intrinsics *K_i* known

$$\hat{P} = [R|t], \quad x = \hat{P}X$$

- Normalized correspondences
 - From image measurements *m*_j

$$x_j = K_j^{-1} m_j$$

Reprojection error

$$E^s = \|x_j - \hat{P}_j X\|^2$$

[HZ04] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, 2nd ed., 2004.

RE – Active Cameras

- (v)PTZ
 - Pan/tilt/zoom parameters at frame *n*

$$(\lambda_n, \varphi_n, f_n)$$

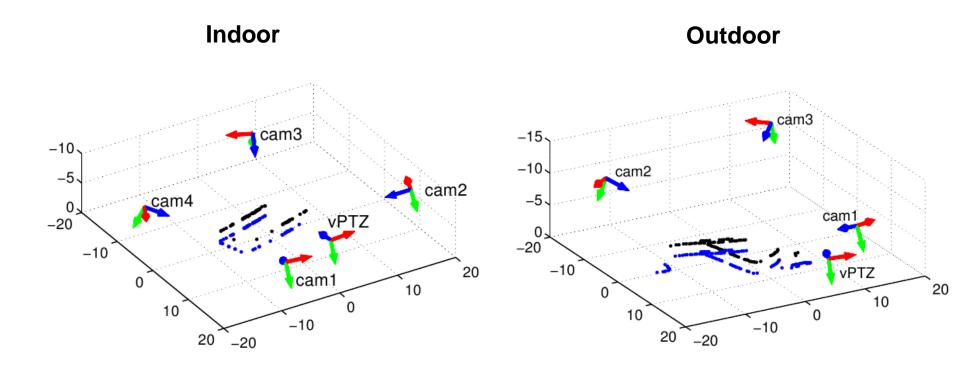
- Spherical camera coordinate system
- Image measurements

$$\omega = \lambda_n + \operatorname{atan} \frac{u_n}{f_n}, \quad \psi = \varphi_n + \operatorname{atan} \frac{v_n}{f_n}$$

3D world points

$$(r_1, r_2, r_3) = [R|t] (a_n, b_n, z_n, 1)^\top$$
$$\Omega = \operatorname{atan} \frac{r_1}{r_3}, \qquad \Psi = \operatorname{atan} \frac{r_2}{r_3}$$
Reprojection error

$$E^d = \|(\omega, \psi)^\top - (\Omega, \Psi)^\top\|^2$$



Calibration – From vPTZ to PTZ

- Common geometric model
 - Imaging optics aligned with rotation axes
 - Not true in general, but vPTZ follows ideal model
 - Nevertheless, sufficiently accurate
- Varying lens distortion
 - Estimate for several zoom levels
 - Interpolation
 - Undistorted image measurements

Results – Setup

Axes units are meters. *z*-axis is negative, because cameras face in positive direction along their optical axis.

[Video]

0