

Motivation and Contribution

- We address color-based model-free online object tracking where neither class-specific prior knowledge nor pre-learned object models are available.
- Recent benchmark evaluations (e.g. VOT [4]) show that color-based trackers tend to drift towards visually similar regions.
- **State-of-the-art** approaches rely on well engineered features (*e.g.* HOG [1]), correlation filters [3], and complex color features (*e.g.* color attributes [2]).
- We argue that trackers **based on standard color representations** still keep up with the state-of-the-art if they properly address two key requirements:
- Distinguish the object from its surroundings.
- Prevent drifting towards distracting regions.

- To this end, we propose a **distractor-aware tracking approach** which addresses both requirements.
- **Supplemental material** publicly available (scan QR code).

Discriminative Object Model

• To distinguish the object from its surrounding region, we employ a Bayes classifier

$$P(\mathbf{x} \in \mathcal{O} \mid \mathbf{O}, \mathbf{S}, b_{\mathbf{x}}) \approx \frac{P(b_{\mathbf{x}} \mid \mathbf{x} \in \mathbf{O}) P(\mathbf{x} \in \mathbf{O})}{\sum_{\Omega \in \{\mathbf{O}, \mathbf{S}\}} P(b_{\mathbf{x}} \mid \mathbf{x} \in \Omega) P(\mathbf{x} \in \Omega)}.$$

• Color histograms $H^{I}_{\{\mathbf{O},\mathbf{S}\}}$ model the joint RGB distribution of image pixels $I(\mathbf{x})$ at location \mathbf{x} , where $b_{\mathbf{x}}$ denotes the corresponding bin

$$\begin{split} P(b_{\mathbf{x}} \,|\, \mathbf{x} \in \mathbf{O}) &\approx \frac{H_{\mathbf{O}}^{I}(b_{\mathbf{x}})}{|\mathbf{O}|}, \qquad P(\mathbf{x} \in \mathbf{O}) \approx \frac{|\mathbf{O}|}{|\mathbf{O}| + |\mathbf{S}|}, \\ P(b_{\mathbf{x}} \,|\, \mathbf{x} \in \mathbf{S}) &\approx \frac{H_{\mathbf{S}}^{I}(b_{\mathbf{x}})}{|\mathbf{S}|}, \qquad P(\mathbf{x} \in \mathbf{S}) \approx \frac{|\mathbf{S}|}{|\mathbf{O}| + |\mathbf{S}|}, \\ P(\mathbf{x} \in \mathcal{O} |\mathbf{O}, \mathbf{S}, b_{\mathbf{x}}) &= \begin{cases} \frac{H_{\mathbf{O}}^{I}(b_{\mathbf{x}})}{H_{\mathbf{O}}^{I}(b_{\mathbf{x}}) + H_{\mathbf{S}}^{I}(b_{\mathbf{x}})} & \text{if } I(\mathbf{x}) \in I(\mathbf{O} \cup \mathbf{S}) \\ 0.5 & \text{otherwise.} \end{cases} \end{split}$$

• Lookup-tables enable efficient evaluation over large search regions.

In Defense of Color-based Model-free Tracking

Horst Possegger [©] Thomas Mauthner [©] Horst Bischof Graz University of Technology, Institute for Computer Graphics and Vision, Austria

Distractor-aware Object Model

• Identify visually distracting regions D whenever they appear within the field-of-view and suppress them in advance

$$P(\mathbf{x} \in \mathcal{O} \mid \mathbf{O}, \mathbf{D}, b_{\mathbf{x}}) = \begin{cases} \frac{H_{\mathbf{O}}^{I}(b_{\mathbf{x}})}{H_{\mathbf{O}}^{I}(b_{\mathbf{x}}) + H_{\mathbf{D}}^{I}(b_{\mathbf{x}})} & \text{if } I(\mathbf{x}) \in I(\mathbf{O} \cup \mathbf{D}) \\ 0.5 & \text{otherwise.} \end{cases}$$

• Combine both object models with weighting parameter λ

$$P(\mathbf{x} \in \mathcal{O} \mid b_{\mathbf{x}}) = \lambda P(\mathbf{x} \in \mathcal{O} \mid \mathbf{O}, \mathbf{D}, b_{\mathbf{x}}) + (1 - \lambda) P(\mathbf{x} \in \mathcal{O} \mid \mathbf{O}, \mathbf{S}, b_{\mathbf{x}}).$$

• Regularly update model to handle changing object appearance using learning rate η $P_{1:t}(\mathbf{x} \in \mathcal{O} \mid b_{\mathbf{x}}) = \eta P(\mathbf{x} \in \mathcal{O} \mid b_{\mathbf{x}}) + (1 - \eta)P$

Localization

- We follow the widely used **tracking-by-detection** principle.
- score s_v and distance score s_d

$$s_v(\mathbf{O}_{t,i}) = \sum_{\mathbf{x}\in\mathbf{O}_{t,i}} P_{1:t-1} \left(\mathbf{x}\in\mathcal{O} \mid b_{\mathbf{x}}\right),$$

 $\mathbf{O}_{t}^{\star} = \arg \max(s_{v}(\mathbf{O}_{t,i}) s_{d}(\mathbf{O}_{t,i}))$ and potential distractors (high vote score).

Scale Adaptation

- over the likelihood map L.
- Perform connected component analysis to adapt the target scale.

$$P_{1:t-1}(\mathbf{x} \in \mathcal{O} \mid b_{\mathbf{x}}).$$

• Densely sample hypotheses $\mathbf{O}_{t,i}$ within rectangular search region and compute their vote

$$s_d(\mathbf{O}_{t,i}) = \sum_{\mathbf{x}\in\mathbf{O}_{t,i}} \exp\left(-\frac{\|\mathbf{x}-\mathbf{c}_{t-1}\|^2}{2\sigma^2}\right).$$

We perform an iterative non-maximum suppression to obtain both the new target location

• Segment the object using an adaptive threshold τ^* based on cumulative histograms $c_{\{\mathbf{0},\mathbf{S}\}}^L$

- *i.e.* DSST & PLT).

- *BMVC*, 2014.
- *Proc. CVPR*, 2014.
- 37(3):583–596, 2015.

This work was supported by the Austrian Science Foundation (FWF) project Advanced Learning for Tracking and Detection in Medical Workflow Analysis (1535-N23).

Both authors contributed equally.

Benchmark Results

• Extensive evaluations on the Visual Object Tracking (VOT) benchmarks [4] show state-ofthe-art accuracy and improved robustness.

• We demonstrate **benefits of distractor-awareness** (DAT) and scale-adaptation (DAT+scale) compared to baseline (noDAT) and state-of-the-art trackers (including the challenge winners,

• Ranking plots based on statistical significance of performance differences w.r.t. accuracy and robustness metrics (Top-performing trackers are located top-right):

er	Accuracy		Robustness		Combined
	Score [↑]	Rank↓	Score↓	Rank↓	Rank↓
[2]	0.49	5.02	1.77	4.56	4.79
[1]	0.57	3.10	1.28	3.98	3.54
3]	0.57	3.44	1.51	4.28	3.86
PAMI'13]	0.46	5.12	0.64	3.54	4.33
< [ICCV'11]	0.48	5.42	2.22	5.00	5.21
	0.55	3.20	1.06	3.38	3.29
-scale	0.58	2.70	1.03	3.26	2.98

References and Acknowledgments

M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg. Accurate Scale Estimation for Robust Visual Tracking. In Proc. M. Danelljan, F. S. Khan, M. Felsberg, and J. van de Weijer. Adaptive Color Attributes for Real-Time Visual Tracking. Ir J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-Speed Tracking with Kernelized Correlation Filters. PAMI,

M. Kristan, R. Pflugfelder, A. Leonardis, J. Matas, L. Čehovin, G. Nebehay, T. Vojíř, G. Fernandez, et al. The Visual Object Tracking VOT2014 challenge results. In *Proc. VOT (ECCV Workshop)*, 2014.