

Motivation

- State-of-the-art multi-object tracking-by-detection
 - Robust offline linking schemes require detections over a large number of frames or the whole sequence in advance
 - Real-time capable online algorithms suffer from long term occlusions and detection failures
- We focus on re-assignment of missed/occluded targets once they reappear rather than hallucinating trajectories
- Targets without corresponding detection are more likely moving within occluded regions than being missed by the detector
- Exploit occlusion information and motion prediction to find physically plausible paths

• Implementation publicly available (scan QR code)

Data Association Re-assignment Occlusion handling

• Compute assignment matrix $\mathbf{A}^* = \left[a_{ij}^{(t)}\right], a_{ij}^{(t)} \in \{0,1\}$ between N_D detections at time t and N_O object trajectories using Hungarian algorithm:

$$\mathbf{A}^* = \underset{\mathbf{A}}{\arg\min} \sum_{i=1}^{N_O} \sum_{j=1}^{N_D} \psi_{ij}^{(t)} a_{ij}^{(t)},$$

s.t.
$$\sum_{i=1}^{N_O} a_{ij}^{(t)} = 1, \forall j \in \{1, \dots, N_D\}, \quad \sum_{j=1}^{N_D} a_{ij}^{(t)} = 1, \forall i \in \{1, \dots, N_O\}$$

• Spatial proximity to decide on safe (isolated and visible) assignments:

$$\psi_{ij}^{(t)} = \begin{cases} \|\mathbf{x}_j^{(t)} - \mathbf{x}_i^{(t-1)}\| & \text{if } \|\mathbf{x}_j^{(t)} - \mathbf{x}_i^{(t-1)}\| < \eta \\ \infty & \text{otherwise} \end{cases}$$

• Re-assign candidate detections to previously missed targets based on occlusion geodesics $\psi_{ij}^{(t)} = \Psi_i^{(\delta_i)} \left(\mathbf{x}_j^{(t)} \right)$

Occlusion Geodesics for Online Multi-Object Tracking Horst Possegger, Thomas Mauthner, Peter M. Roth, and Horst Bischof

{possegger,mauthner,pmroth,bischof}@icg.tugraz.at Institute for Computer Graphics and Vision, Austria

Conservative association

- Compute instance-specific confidence maps time step
- Check each re-assignment candidate at posit of a valid and plausible path to the last kno
- Efficiently compute cost $\Psi_i^{(\delta_i)}$ of a valid pat via recursive accumulation:

$$\Psi_i^{(\delta_i)}(\mathbf{x}) = 1 - \varphi_i^{(\delta_i)}(\mathbf{x}) + \inf_{\mathbf{x}} \Psi_i^{(\delta_i - 1)}$$

Confidence Score

• Confidence score $\varphi_i^{(\delta_i)}$ indicating the preser after being missed for δ_i time steps:

$$\varphi_i^{(\delta_i)}(\mathbf{x}) = c_{o,i}^{(\delta_i)}(\mathbf{x}) c_{p,i}^{(\delta_i)}(\mathbf{x}) c_{d,i}^{(\delta_i)}(\mathbf{x})$$

• Occlusion information and detector reliability factor $\beta \in [0, 1]$:

$$e_{o,i}^{(\delta_i)}(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{x} \in \mathcal{P}_s \cup \mathcal{P}_d^{(t)} \\ 1 - \beta^{\delta_i} & \text{otherwise} \end{cases}$$

• Physically plausible distance:

$$c_{p,i}^{(\delta_i)}(\mathbf{x}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{\hat{x}}_i\|^2}{2\sigma_p^2 \delta_i^2 \max\left(\|\mathbf{\hat{d}}_i\|, v_{\mathsf{avg}}\right)^2}\right)$$

 Inertia model based on predicted motion direction $\hat{\mathbf{d}}_i$ (IQM):

$$c_{d,i}^{(\delta_i)}(\mathbf{x}) = \exp\left(-\frac{\left(\left\langle \hat{\mathbf{d}}_i, \mathbf{d}_j \right\rangle - \|\hat{\mathbf{d}}_i\| \|\mathbf{d}_j\|\right)^2}{2\sigma_d^2 \|\hat{\mathbf{d}}_i\|^2 \|\mathbf{d}_j\|^2}\right)$$

ics	Evaluation and Results							
	 State-of-the-art performance while being fully online and real-time capable (~ 11 fps, MATLAB) Single view experiments on standard benchmark datasets (See paper for detailed evaluation): 							
	Dataset	Approach	Online	App.	ΜΟΤΑ	ΜΟΤΡ	FM	IDS
	PETS '09 S2.L1	[2] [4] [5] Proposed	no no yes yes	no yes yes no	98.0 90.6 93.3 98.1	82.8 80.2 68.2 80.5	11 6 - 16	10 11 19 9
φ_i for missed targets at each	PETS '09 S2.L2	[2] [4] [5] Proposed	no no yes yes	no yes yes no	75.8 56.9 66.7 66.0	65.1 59.4 58.2 64.8	252 73 - 315	234 99 215 181
tion $\mathbf{x} = (x, y)^{\top}$ for existence own object position $\mathbf{\hat{x}}_i$	PETS '09 S2.L3	[2] [4] [5] Proposed	no no yes yes	no yes yes no	62.8 45.5 40.4 62.5	70.5 64.6 56.4 62.6	217 27 - 98	225 38 80 59
th to a candidate location \mathbf{x} $f(\mathbf{x} + \mathbf{z}), \ \mathbf{z}\ \leq v_{avg}$	Town Centre	[1] [3] [5] [6] Proposed	yes no yes no yes	no no yes no no	64.3 71.3 73.6 69.1 70.7	80.2 71.8 68.8 72.0 68.6	343 363 - 440 321	222 165 421 243 157
es nce of object i at location \mathbf{x}								
	PETS'09 S2	PETS'0	9 S2.L2	PETS'0	9 S2.L3	Town C	entre	
	References and Acknowledgments							
	 B. Benfold and I. Reid. Stable Multi-Target Tracking in Real-Time Surveillance Video. In Proc. CVPR, 2011. M. Hofmann, D. Wolf, and G. Rigoll. Hypergraphs for Joint Multi-View Reconstruction and Multi-Object Tracking. In Proc. CVPR, 2013. L. Leal-Taixé, G. Pons-Moll, and B. Rosenhahn. Everybody needs somebody: Modeling social and grouping behavior on a linear programming multiple people tracker. In Proc. ICCV Workshops, 2011 							
	 [4] A. Milan, S. Roth, and K. Schindler. Continuous Energy Minimization for Multi-Target Tracking. <i>PAMI</i>, 2014. [5] J. Zhang, L. Lo Presti, and S. Sclaroff. Online Multi-Person Tracking by Tracker Hierarchy. In <i>Proc. AVSS</i>, 2012. [6] L. Zhang, Y. Li, and R. Nevatia. Global Data Association for Multi-Object Tracking Using Network Flows. In <i>Proc. CVPR</i>, 2008. This work was supported by the Austrian Science Foundation (FWF) project Advanced Learning for Tracking and Detection in Medical Workflow Analysis (I535-N23). 							

