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Motivation and Contribution

• Recent benchmark evaluations
(e.g. FDDB [2]) show that
standard CNN detectors fail on
occluded faces.

• State-of-the-art approaches rely
on large pre-trained ImageNet
models, e.g. [1], and on large
datasets with face-attribute an-
notations to re-rank object pro-
posals [4].

• We show that simple CNN based
detectors trained from scratch
can outperform these methods, if
they handle occlusions properly.

• To this end, we train a part-based
CNN detector with our grid loss
function.

Standard Loss Grid Loss

• Supplemental material is available online.
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• 2 convolution layers on top of Aggregate Channel Features.

• Linear pose-specific classifiers on top of the last convolution layer.

• At test time: fully convolutional detection over an image pyramid.

• Regressor to refine location of detected faces.

• To tackle occlusions we look at spatially non-overlapping blocks on the
last convolution layer.

• Grid loss optimizes a loss on each of these blocks separately.

Loss Function

Standard Loss Grid Loss

• Median response of a CNN detection template on the positive training
set is negative with standard loss functions.

• We encourage a CNN to make sub-regions of the detection template
discriminative:

– Divide the last convolution layer f into blocks fi.

– Optimize loss on blocks separately to train part detectors wi.

– Share weights with a regular layer w.

l(θ) = max(0, 1− y · (w�f + b)) + λ ·
N∑

i=1

max(0,m− y · (wi
�f i + bi))

Robustness to Occlusions

• Parts are discriminative alone.

• If subset of parts fail (due to occlusion), detection can recover.

Method COFW-HO COFW-LO
Grid Loss 0.979 0.998
Standard Loss 0.909 0.982

True Positive Rate on COFW Heavily Occluded (COFW-HO) and Less
Occluded (LO) subsets with our loss vs standard loss.

Diversity of Learned Features

• More diverse features compared to
standard loss.

• Prevents learning only a small subset
of prominent features, e.g. eye.

• Encourages learning discriminative
features for all sub-regions.

Method Correlation
Grid Loss 225.96
Standard Loss 22500.25
Correlation on feature maps

Generalization Ability

• Better generalization ability, due to
larger diversity of features.

• On smaller training set sub-sets the
performance gap between Grid Loss
and standard loss functions increases. Comparison of true positive rate

with detectors trained on a subset
of the dataset

Benchmark Results

• We achieve state-of-the art performance on several datasets.

Evaluation on FDDB [2]
Evaluation on PASCAL Faces [3]
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