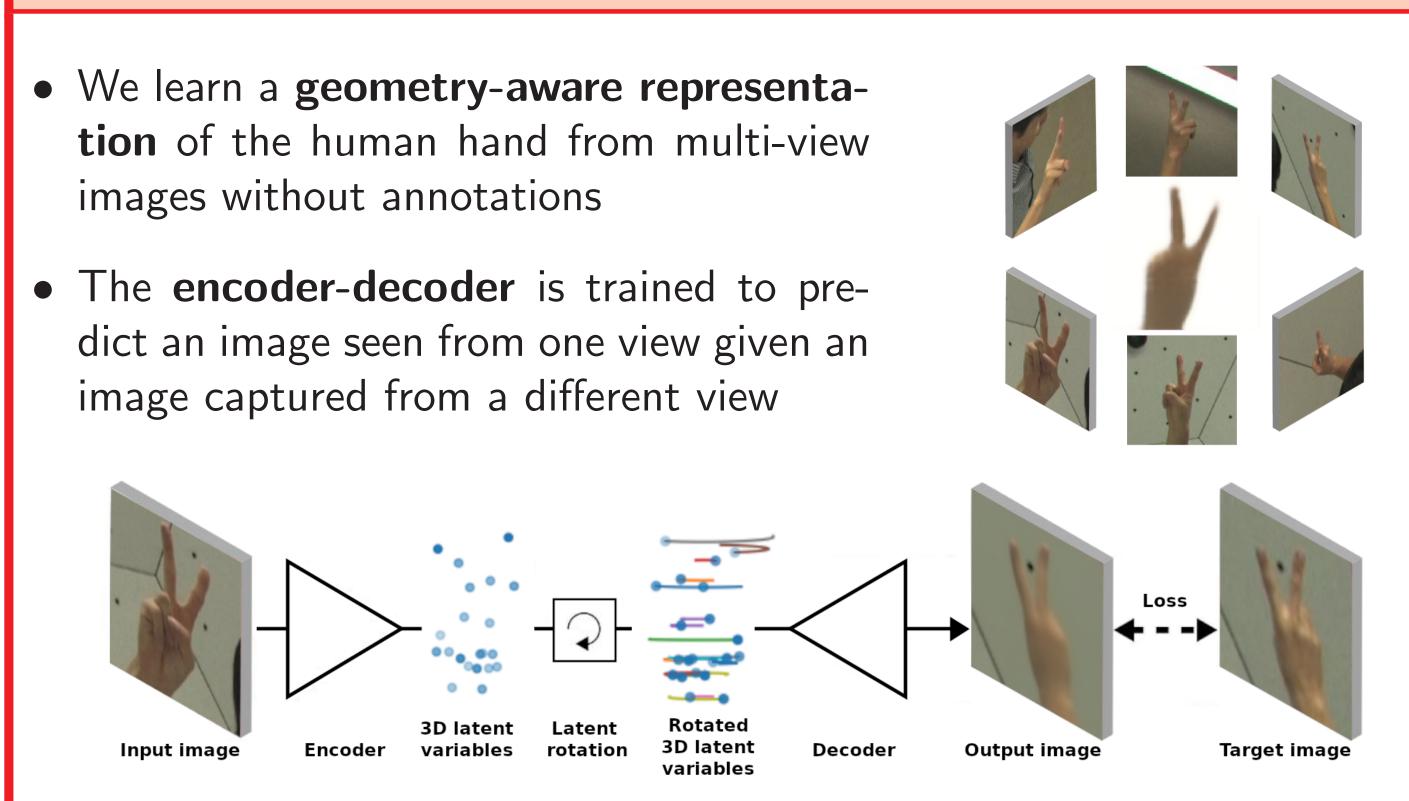


Motivation

- We address the long standing problem of data **annotation**, which is especially expensive for 3D hand pose estimation
- We use **unlabeled data** to reduce the required amount of annotated data
- We propose a **semi-supervised** method, that learns to estimate the 3D pose of a monocular hand image
- We build upon the work of Rhodin *et al.* [2] on 3D human pose estimation which we adapt and optimize to work for hands and to jointly handle labeled and unlabeled data in an end-to-end manner

Idea



- We train an encoder-decoder network to learn an unsupervised geometry-aware representation for 3D hand pose estimation
- We use the **latent representation** to learn a mapping to the 3D pose in a supervised manner
- The latent representation already captures the 3D geometry, therefore
 - \rightarrow the mapping is much simpler and
 - \rightarrow considerably fewer examples are required to learn the mapping
- We use sequences of RGB images acquired from multiple synchronized and calibrated cameras
- We feed the rotation matrix $\mathbf{R}^{i \to j}$ connecting \mathbf{I}_t^i and \mathbf{I}_t^j as an additional input to the encoder and decoder, and train them to encode \mathbf{I}_{t}^{i} and resynthesize \mathbf{I}_{t}^{J}

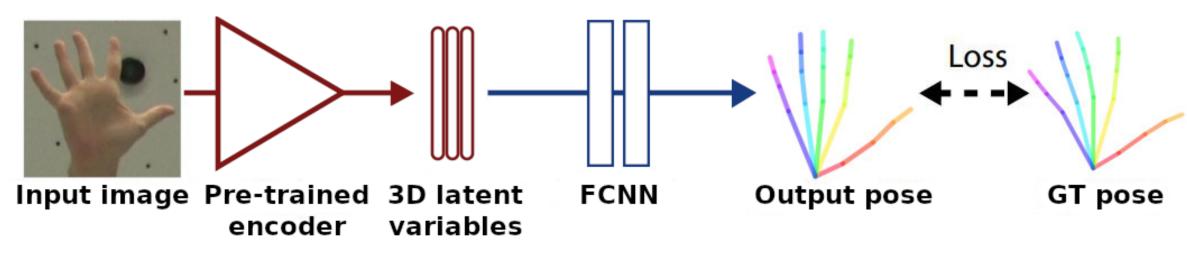
Semi-Supervised Learning of Monocular **3D Hand Pose Estimation from Multi-View Images**

Markus Müller^{1,2} Georg Poier^{1,3} Horst Possegger¹ Horst Bischof¹

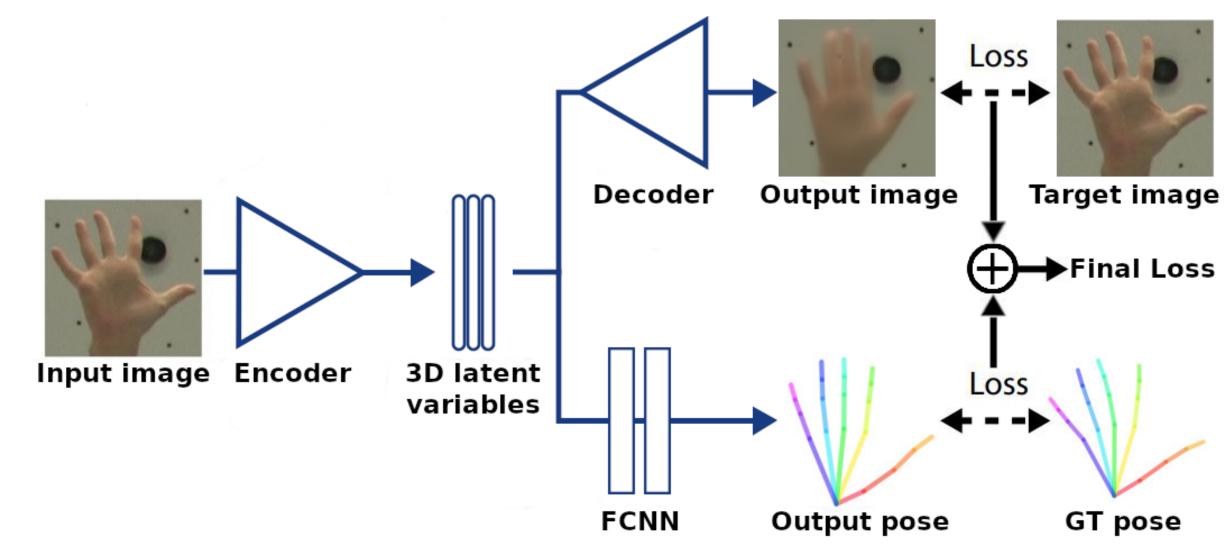
¹Graz University of Technology, ²Naked Labs, ³Reactive Reality

Geometry-Aware 3D Hand Pose Estimation

- Novel views of the corresponding hand pose can be rendered by manipulating the rotation parameter $\mathbf{R}^{i \rightarrow j}$
- We split the background and the appearance of the hand from the latent representation to only encode the 3D geometry
- We model the latent representation $\mathbf{L}^{3\mathrm{D}} \in \mathbb{R}^{3 \times N}$ of the input image as a set of N points in 3D space
- \mathbf{L}^{3D} has the semantic meaning of a skeleton with K=21 hand joints encoded as a vector $\mathbf{P} \in \mathbb{R}^{3K}$
- We learn a mapping $\mathcal{F}: \mathbf{L}^{3\mathrm{D}}
 ightarrow \mathbb{R}^{3K}$
- \mathcal{F} is modeled as a Fully Connected Neural Network (FCNN)
- This mapping requires only a small amount of annotated data
- Pre-trained network as proposed by Rhodin et al. [2] combines the encoder-decoder network (unsupervised training) and the FCNN (supervised training):

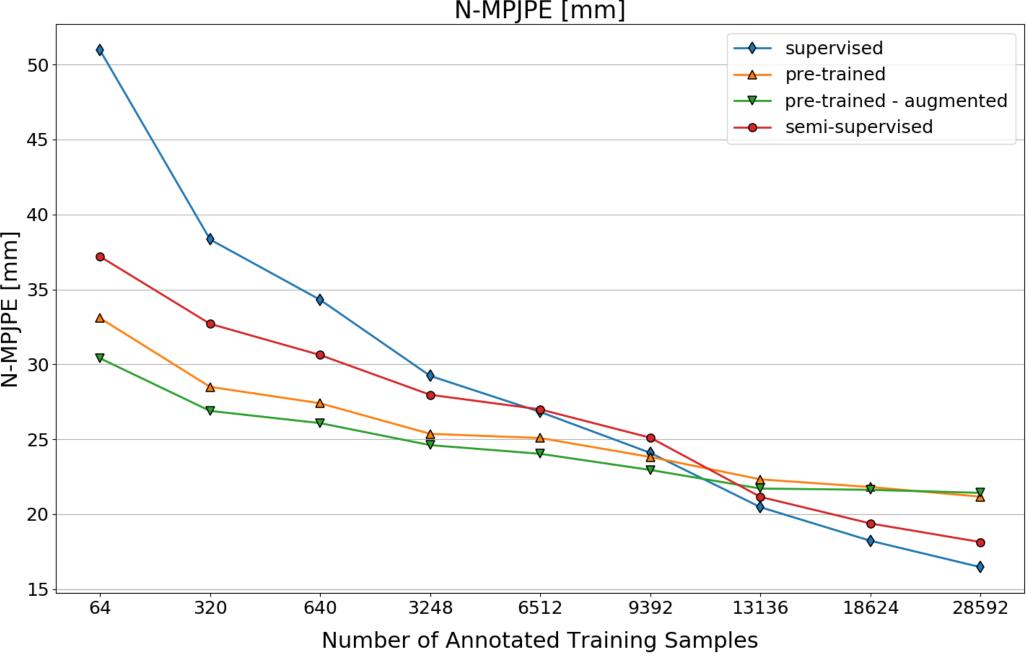


• Our **semi-supervised** network simultaneously optimizes the weights of the encoder, decoder and FCNN:

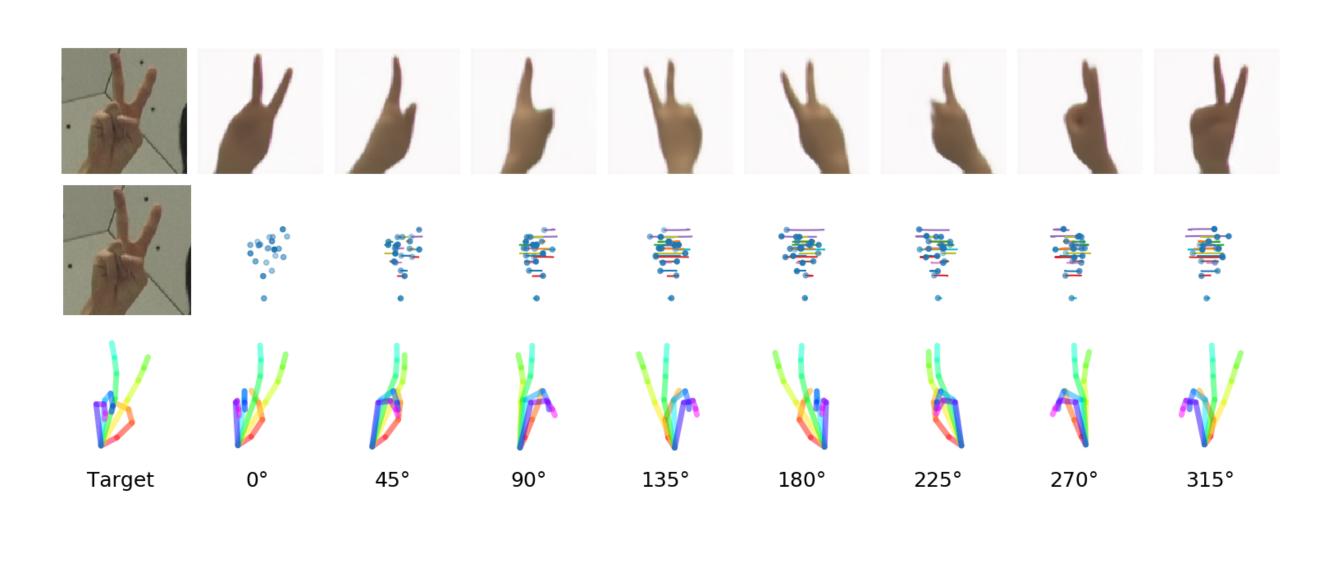


- Semi-supervised setup almost halves the training time
- We use a random minority oversampling method to compensate for the imbalances in labeled and unlabeled data

- trained encoder
- are trained simultaneously
- Define different levels of supervision to train the FCNN



pose predictions of the **semi-supervised** network:



- Intelligence (TPAMI), 41(1):190-204, 2019.
- [2] *(ECCV)*, 2018.

Findings

• **Supervised**: The network directly maps an input image to the 3D pose, without pre-training the encoder with unlabeled images

• **Pre-trained**: This is the hand pose estimation network using a pre-

• **Semi-supervised**: The encoder-decoder network and the pose network

• Normalized Mean Per Joint Position Error on CMU Panoptic dataset [1] N-MPJPE [mm]

• Qualitative results for Novel View Synthesis, 3D latent variables and

References

H. Joo, T. Simon, X. Li, H. Liu, L. Tan, L. Gui, S. Banerjee, T. Godisart, B. C. Nabbe, I. A Matthews, T. Kanade, S. Nobuhara, and Y. Sheikh. Panoptic studio: A massively multiview system for social interaction capture. IEEE Transactions on Pattern Analysis and Machine

H. Rhodin, M. Salzmann, and P. Fua. Unsupervised geometry-aware representation learning for 3d human pose estimation. In Proceedings of the European Conference on Computer Vision