Exploiting 3D Information for Robust Real-Time Tracking of Multiple Objects in Complex Scenarios

Graz

MSc Defense Horst Possegger

Supervisor Prof. Horst Bischof

Advisors

Sabine Sternig, Thomas Mauthner, and Peter M. Roth

Monocular Multiple Object Tracking

- Location estimates
 - Background modelling [1,2]
 - Appearance information [3,4]
 - Part-based detectors [5]
- Drawbacks
 - Occlusions
 - Lack of 3D information

- [2] Intille and Bobick. Visual Tracking Using Closed-Worlds. In Proc. ICCV, 1995.
- [3] Comaniciu, Ramesh, and Meer. Kernel-Based Object Tracking. PAMI, 2003.
- [4] Seo, Choi, Kim, and Hong. Where are the ball and players? Soccer Game Analysis with Color-based Tracking and Image Mosaick. In Proc. ICIAP, 1997.
- [5] Wu and Nevatia. Detection and Tracking of Multiple, Partially Occluded Humans by Bayesian Combination of Edgelet based Part Detectors. IJCV, 2007.

Multiple Views

- Planar projections [1,2]
 - Fuse 2D information
 - Common ground-plane
 - Projection artifacts
- Volumetric reconstructions [3,4]
 - No planarity assumption
 - Valuable tracking cue

- [2] Eshel and Moses. Tracking in a Dense Crowd Using Multiple Cameras. IJCV, 2010.
- [3] Guan, Franco, and Pollefeys. Multi-Object Shape Estimation and Tracking from Silhouette Cues. In Proc. CVPR, 2008.
- [4] Liem and Gavrila. Multi-person tracking with overlapping cameras in complex, dynamic environments. In Proc. BMVC, 2009.

Overview

From visual hull reconstruction using foreground segmentations of calibrated cameras...

Outline

- Volumetric mass density
- Resolving geometric ambiguities
- Experiments
- Conclusion

3D Reconstruction

- Constraints
 - Low number of views
 - Wide baselines
 - Different viewing angles
- Shape from Silhouette [1,2]
 - Volumetric reconstruction
 - Binary foreground segmentation (e.g., [3])
 - Intersection of viewing cones visual hull [4]
 - Noise sensitivity

[1] Martin and Aggarwal. Volumetric Descriptions of Objects from Multiple Views. PAMI, 1983.

[2] Baumgart. Geometric Modeling for Computer Vision. PhD thesis, Stanford University, CS Department, 1974.

- [3] McFarlane and Schofield. Segmentation and tracking of piglets in images. MVA, 1995.
- [4] Laurentini. The Visual Hull Concept for Silhouette-Based Image Understanding. PAMI, 1994.

Local Mass Densities

• Visual hull representation

$$v_i \in \mathcal{V} = \begin{cases} 1 & \text{if } v_i \text{ foreground} \\ 0 & \text{otherwise} \end{cases}$$

Occupancy volume

$$\mathcal{V}_{\mathcal{O}} = \{ m_D(v_i) \, | \, \forall v_i \in \mathcal{V} \} \,,$$

$$m_D(v_i) = \frac{\sum_{v_j \in N_{v_i}} v_j}{|N_{v_i}|}$$

- Local neighborhood
 - Depends on object class
 - People: upright aligned torso

Neighborhood Formulation

- Upright aligned torso
- Approximation
 - Axis-aligned cuboid
 - Efficiency by integral structures

$$N_{v_i} = \left\{ v_j \ \left| \ |v_{j,x} - v_{i,x}| \le r \land |v_{j,y} - v_{i,y}| \le r \land |v_{j,z} - v_{i,z}| \le \frac{h}{2} \right\} \right\}$$

Occupancy volume.

Horst Possegger

Tracking from Local Mass Densities

- Localization
 - (2+1)D tracking
 - Estimate *xy*-coordinates
 - Find vertical mass center
- Top-view occupancy map
 - Maximum along vertical axis
 - Indicates location of objects' mass center

Input image.

Visual hull.

Occupancy volume.

Occupancy map.

Vertical mass center.

Estimating *xy*-coordinates

- Tracking step
 - Bootstrap particle filter [1]
 - Second order auto-regressive transition model [2]
- Multiple objects
 - Individual particle filters
 - Voronoi tesselation
 - Restrict particle transition by Voronoi cell
 - Inspired by [3]

[1] Isard and Blake. Condensation – Conditional Density Propagation for Visual Tracking. IJCV, 1998. [2] Pérez, Hue, Vermaak, and Gangnet. Color-Based Probabilistic Tracking. In Proc. ECCV, 2002.

[Video]

[3] Kristan, Perš, Perše, and Kovačič. Closed-world tracking of multiple interacting targets for indoor-sports applications. CVIU, 2009.

Horst Possegger

Master's Thesis

Resolving Geometric Ambiguities

- Appearance information
 - Exploit 3D knowledge
 - Extract valuable features
 - Hue-saturation histograms
- Feature bag
 - For each camera *c*
 - FIFO update strategy

$$\mathcal{F}_i = \left\{ \mathcal{F}_i^{(c)} \right\}_{c=1}^{N_C}, \quad \mathcal{F}_i^{(c)} = \left\{ \mathbf{f}_l^{(c)} \right\}_{l=1}^{N_F}$$

t = 1051.

t = 1060

Merge-Split Approach

Merge step.

Split step.

- Build conflict pools \mathcal{P}_m
- Train one-vs-all logistic regression classifiers [1] on-demand

 $p_i\left(y_{i,l} \mid \mathbf{f}_l, \mathbf{w}_i\right) = \frac{1}{1 + e^{-y_{i,l}\mathbf{w}_i^{\top}\mathbf{f}_l}}, \quad y_{i,l} = \begin{cases} +1 & \forall \mathbf{f}_l \in \mathcal{F}_i \\ -1 & \forall \mathbf{f}_l \in \mathcal{F}_j : \forall j \in \mathcal{P}_m, j \neq i \end{cases}$

• Detect seperate local maxima (NMS [2])

$$\hat{i} = \underset{i}{\operatorname{arg max}} p_i \left(y_{i,\text{NMS}} = +1 \,|\, \mathbf{f}_{\text{NMS}}, \mathbf{w}_i \right)$$

[1] Fan, Chang, Hsieh, Wang, and Lin. *LIBLINEAR: A Library for Large Linear Classification*. JMLR, 2008.
[2] Neubeck and Van Gool. *Efficient Non-Maximum Suppression*. In Proc. ICPR, 2006.

Horst Possegger

Experiments

• Datasets

Dataset	Cameras	Objects	Frames	Resolution	Tracking Region
Changing Appearance (CHAP)	4	5	3760	1024×768	$7\mathrm{m} imes 4\mathrm{m}$
Leapfrogs (Leaf 1)	4	4	1800	1024×768	$7\mathrm{m} imes 4\mathrm{m}$
Leapfrogs (LEAF 2)	4	5	2400	1024×768	$7\mathrm{m} \times 4\mathrm{m}$
Musical Chairs (MUCH)	4	5	2400	1024×768	$7\mathrm{m} imes 4\mathrm{m}$
Pose	4	6	1820	1024×768	$7\mathrm{m} imes 4\mathrm{m}$
TABLE	4	5	1760	1024×768	$7\mathrm{m} imes 4\mathrm{m}$
APIDIS Basketball [1]	7	12	1500	1600×1200	$15\mathrm{m} imes 15\mathrm{m}$

Challenges

- Spatial proximity / crowds / occlusions
- Different poses
- Out-of-plane motion
- Similar / changing appearance

[1] Autonomous Production of Images based on Distributed and Intelligent Sensing (APIDIS), http://www.apidis.org/Dataset

Different Poses

Master's Thesis

((G

Musical Chairs

Master's Thesis

+

((G

APIDIS Basketball

[Video]

Master's Thesis

 \bullet

((G

Evaluation

- CLEAR performance metrics [1]
 - Multiple object tracking accuracy (MOTA)
 - Object configuration errors
 - False positives, false negatives, identity switches
 - Multiple object tracking precision (MOTP)
 - Alignment of true positive trajectories w.r.t. ground truth
 - Ground-plane distance
- Comparison
 - KSP tracker [2]
 - POM detections [3]
 - Same input data

[1] Bernardin and Stiefelhagen. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. EURASIP JIVP, 2008.

[2] Berclaz, Fleuret, Türetken, and Fua. Multiple Object Tracking using K-Shortest Paths Optimization. PAMI, 2011.

[3] Fleuret, Berclaz, Lengagne, and Fua. Multi-Camera People Tracking with a Probabilistic Occupancy Map. PAMI, 2008

Tracking Performance

Dataset	Algorithm	MOTP [m]	MOTA	TP	FP	\mathbf{FN}	IDS
Снар	Proposed	0.102	0.994	1555	2	6	1
	Prop. w/o Color	0.102	0.719	1316	193	241	4
	KSP+POM	0.167	0.952	1607	50	21	7
Leaf 1	Proposed	0.107	0.991	464	2	2	0
	Prop. w/o Color	0.107	0.721	436	83	44	7
	KSP+POM	0.169	0.976	495	6	1	5
Leaf 2	Proposed	0.097	0.916	930	41	41	0
	Prop. w/o Color	0.116	0.727	856	115	117	34
	KSP+POM	0.175	0.819	913	87	66	24
Мисн	Proposed	0.111	0.977	783	9	9	0
	Prop. w/o Color	0.116	0.736	694	99	99	11
	KSP+POM	0.218	0.754	770	139	32	26
Pose	Proposed	0.123	0.944	485	14	14	0
	Prop. w/o Color	0.128	0.822	456	42	44	3
	KSP+POM	0.201	0.555	427	156	31	17
TABLE	Proposed	0.112	0.898	621	32	28	6
	Prop. w/o Color	0.121	0.816	596	57	55	8
	KSP+POM	0.210	0.719	573	105	58	14
APIDIS	Proposed	0.205	0.675	656	88	172	9
	Prop. w/o Color	0.211	0.597	625	121	202	10
	KSP+POM	0.231	0.490	607	156	220	46

•

(()

Results - Accuracy

Higher is better.

Results - Precision

Measured in meters, lower is better.

Runtime Performance

	Proposed	Prop. w/o Color	KSP	РОМ	$\begin{array}{c} \text{KSP} \\ +\text{POM} \end{array}$
Chap	9.89	12.67	43.49	0.02	0.02
Leaf 1	9.88	10.34	63.84	0.04	0.04
Leaf 2	7.65	9.04	229.77	0.05	0.05
Much	12.08	13.21	185.28	0.06	0.06
Pose	10.27	12.99	132.49	0.05	0.05
TABLE	8.03	9.60	208.51	0.07	0.07
APIDIS	4.42	6.16	80.70	0.03	0.03

Average frame rate.

Conclusion

- Multiple object tracking
 - Calibrated camera network
 - Volumetric reconstruction
- Volumetric mass densities
 - Valuable cue for multi-object tracking
 - Not restricted to ground-plane motion
 - Handles various poses
 - Consistent identification by appearance information
 - Fast, on-line tracking

Outlook

- Incorporate a priori information e.g., static occluder inference [1]
- Specific challenges *e.g.*, jersey number extraction [2]
- View planning e.g., Pan-Tilt-Zoom (PTZ) cameras
- Publications
 - CVWW

OCG Best Student Paper Award

• CVPR

CVWW2013

Guan, Franco, and Pollefeys. 3D Occlusion Inference from Silhouette Cues. In Proc. CVPR, 2007.
 Shitrit, Berclaz, Fleuret, and Fua. Tracking Multiple People under Global Appearance Constraints. In Proc. ICCV, 2011.

Horst Possegger

Master's Thesis

Thank you! TABLE Dataset

[Video]

Horst Possegger

(

Master's Thesis

Overview

- Visual hull reconstruction
- Local mass densities
 - Less sensitive to noise
 - Valuable tracking cue
- Estimate xy-coordinates
 - Particle filtering
 - Voronoi tesselation
- Find vertical mass center

Visual Hull Reconstruction

- Subset of cameras
 - Ability to view a voxel
 - Incorporate *chirality* [1]
 - Handle invalid image regions
 e.g., superimposed logos, rectification process

otherwise

$$\operatorname{visible}(v_i) = \left\{ c \, \middle| \, \operatorname{visible}_c(v_i) = 1 \land \operatorname{sign}\left(d_{v_i}^{(c)}\right) > 0 \right\}_{c=1}^{N_C}$$
$$\operatorname{visible}_c(v_i) = \left\{ \begin{array}{c} 1 & \text{if } \operatorname{project}_c(v_i) \in I_c \end{array} \right.$$

[1] Hartley. Chirality. IJCV, 1998.

Horst Possegger

Visual Hull Quality

- Camera placement
 - · Influence on visual hull quality
 - Large volumes for similar view-points
- Camera calibration
 - Intrinsic & extrinsic parameters
 - 3D targets, automatic methods, etc

Efficiency – Occupancy Volume

- Mass density computation at specific height levels
- Efficient approximation for *xy*-coordinates

Autonomous Tracking

- Pre-defined entry regions
- Incoming objects
 - Detect via MSER extraction [1]
 - Re-identify using feature bags

APIDIS basketball court.

ICG laboratory.

[1] Matas, Chum, Urban, and Pajdla. Robust Wide Baseline Stereo from Maximally Stable Extremal Regions. In Proc. BMVC, 2002.