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Introduction

Motivation

Traffic light control system

Predict intent of pedestrians

Want to cross the road?
Direction?

Pedestrian detection as
pre-processing step
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Introduction

Camera Setup

Stereo cameras mounted on traffic light filming
downwards

→ disparity data

Overhead viewpoint vs. classical surveillance
viewpoint
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Introduction

Main Contributions

Pedestrian detector for overhead views
Faster R-CNN for RGB-D images

Two modality fusion architecturess
Several modality fusion layers
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Introduction

Faster R-CNN (Ren et al. 2015)

Use classification networks for detection

CNN features are used in two stages

Region Proposal Network (RPN)
Region Pooling→ Region Classification
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Figure 1: Left: Region Proposal Network (RPN). Right: Example detections using RPN proposals
on PASCAL VOC 2007 test. Our method detects objects in a wide range of scales and aspect ratios.

feature map. Each sliding window is mapped to a lower-dimensional vector (256-d for ZF and 512-d
for VGG). This vector is fed into two sibling fully-connected layers—a box-regression layer (reg)
and a box-classification layer (cls). We use n = 3 in this paper, noting that the effective receptive
field on the input image is large (171 and 228 pixels for ZF and VGG, respectively). This mini-
network is illustrated at a single position in Fig. 1 (left). Note that because the mini-network operates
in a sliding-window fashion, the fully-connected layers are shared across all spatial locations. This
architecture is naturally implemented with an n× n conv layer followed by two sibling 1× 1 conv
layers (for reg and cls, respectively). ReLUs [15] are applied to the output of the n× n conv layer.

Translation-Invariant Anchors
At each sliding-window location, we simultaneously predict k region proposals, so the reg layer
has 4k outputs encoding the coordinates of k boxes. The cls layer outputs 2k scores that estimate
probability of object / not-object for each proposal.2 The k proposals are parameterized relative to
k reference boxes, called anchors. Each anchor is centered at the sliding window in question, and is
associated with a scale and aspect ratio. We use 3 scales and 3 aspect ratios, yielding k = 9 anchors
at each sliding position. For a conv feature map of a sizeW ×H (typically∼2,400), there areWHk
anchors in total. An important property of our approach is that it is translation invariant, both in
terms of the anchors and the functions that compute proposals relative to the anchors.

As a comparison, the MultiBox method [20] uses k-means to generate 800 anchors, which are not
translation invariant. If one translates an object in an image, the proposal should translate and the
same function should be able to predict the proposal in either location. Moreover, because the
MultiBox anchors are not translation invariant, it requires a (4+1)×800-dimensional output layer,
whereas our method requires a (4+2)×9-dimensional output layer. Our proposal layers have an order
of magnitude fewer parameters (27 million for MultiBox using GoogLeNet [20] vs. 2.4 million for
RPN using VGG-16), and thus have less risk of overfitting on small datasets, like PASCAL VOC.

A Loss Function for Learning Region Proposals
For training RPNs, we assign a binary class label (of being an object or not) to each anchor. We
assign a positive label to two kinds of anchors: (i) the anchor/anchors with the highest Intersection-
over-Union (IoU) overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap higher
than 0.7 with any ground-truth box. Note that a single ground-truth box may assign positive labels
to multiple anchors. We assign a negative label to a non-positive anchor if its IoU ratio is lower than
0.3 for all ground-truth boxes. Anchors that are neither positive nor negative do not contribute to the
training objective.

With these definitions, we minimize an objective function following the multi-task loss in Fast R-
CNN [5]. Our loss function for an image is defined as:

L({pi}, {ti}) =
1

Ncls

∑

i

Lcls(pi, p
∗
i ) + λ

1

Nreg

∑

i

p∗iLreg(ti, t
∗
i ). (1)

2For simplicity we implement the cls layer as a two-class softmax layer. Alternatively, one may use logistic
regression to produce k scores.
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Detection in RGB-D Images

Incorporating Disparity Data

Transfer learning between modalities

Zeiler & Fergus network

Disparity depends on position relative to camera

→ Data variation

Solution: Height above ground (HAG) encoding

Estimate ground plane of the scene
Compute HAG
Apply colormap to HAG data
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Detection in RGB-D Images

Height above Ground Encoding

Stereo Images
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Detection in RGB-D Images

Height above Ground Encoding

Disparity Map
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Detection in RGB-D Images

Height above Ground Encoding

Colored HAG
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Detection in RGB-D Images
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Detection in RGB-D Images

Mid-layer Fusion

Fusion of mid-layer representations

Single stream after convolutional layers

Number of parameters significantly reduced

117 M vs. 45 M
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Detection in RGB-D Images
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Learning Non-Maximum Suppression

Learning Non-Maximum
Suppression
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Learning Non-Maximum Suppression

Greedy NMS

De-facto standard in object detection
Need to choose constant overlap threshold

→ heavily tuned to validation set

Trade-off between recall and precision
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Learning Non-Maximum Suppression

Tnet (Hosang et al. 2016)
A Convnet for Non-Maximum Suppression. 3
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Fig. 2: Base architecture of our Tyrolean network (Tnet). Each box is a feature
map, its dimensions are indicated at its bottom, the coloured square indicates
the convolutional filters size, the stride is marked next to the downward arrow.

Auto-context re-score detections using local [37, 3] or global [38] image informa-
tion. Albeit such approaches do improve detection quality, they still require a
final NMS processing step. Our convnet does re-score detections, but at the same
time outputs a score map that does not require further processing. We provide
experiments (in §4) that show improved performance over auto-context.

Convnets and NMS Few works have linked convnets and NMS, detection con-
vnets are commonly trained unaware of the NMS post-processing step. [40] pro-
posed an NMS-aware training loss, making the training truly end-to-end. The
used NMS is greedy and with fixed parameters. [32] proposes to use an LSTM
to decide how many detections should be considered in a local region. The de-
tections amongst the regions are then merged via traditional NMS. In contrast,
our convnet requires no post-processing. To the best of our knowledge our Tnet
is the first network explicitly designed to replace the final NMS stage.

In §2 we describe our base network, §3 explores its use in a synthetic setup.
Then §4 reports results over DPM [8] detections in crowds datasets (small scale
variance), and finally results over FasterRCNN [25] on Pascal VOC people [7].

2 Base Tyrolean network

The main intuition behind our proposed Tyrolean network (Tnet) is that the
score map of a detector together with a map that represents the overlap between
neighbouring detections contains valuable information to perform better NMS
than GreedyNMS (see figure 1, second row). Our network is a traditional convnet
but with access to two slightly unusual inputs (described below), namely score
map information and IoU maps. Figure 2 shows the overall network. In our base
Tnet the first stage applies 512 11 × 11 filters over each input layer, and 512
1 × 1 filters are applied on layers 2 and 3. ReLU non-linearities are used after
each layer but the last one. Neither max-pooling nor local normalization is used.

The base network is trained and tested in a fully convolutional fashion. It
uses the same information as GreedyNMS, and does not access the image pixels
directly. The required training data are only a set of object detections (before

Fully convolutional network
Inputs are detection boxes encoded as

Score maps
IoU of the boxes

Output is final score map after suppression

→ No post-processing needed
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than GreedyNMS (see figure 1, second row). Our network is a traditional convnet
but with access to two slightly unusual inputs (described below), namely score
map information and IoU maps. Figure 2 shows the overall network. In our base
Tnet the first stage applies 512 11 × 11 filters over each input layer, and 512
1 × 1 filters are applied on layers 2 and 3. ReLU non-linearities are used after
each layer but the last one. Neither max-pooling nor local normalization is used.

The base network is trained and tested in a fully convolutional fashion. It
uses the same information as GreedyNMS, and does not access the image pixels
directly. The required training data are only a set of object detections (before

Fully convolutional network
Inputs are detection boxes encoded as

Score maps
IoU of the boxes

Output is final score map after suppression

→ No post-processing needed
C. Ertler, H. Possegger, M. Opitz and H. Bischof, ICG
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Tnet (Hosang et al. 2016)
A Convnet for Non-Maximum Suppression. 3
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Fig. 2: Base architecture of our Tyrolean network (Tnet). Each box is a feature
map, its dimensions are indicated at its bottom, the coloured square indicates
the convolutional filters size, the stride is marked next to the downward arrow.
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variance), and finally results over FasterRCNN [25] on Pascal VOC people [7].
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score map of a detector together with a map that represents the overlap between
neighbouring detections contains valuable information to perform better NMS
than GreedyNMS (see figure 1, second row). Our network is a traditional convnet
but with access to two slightly unusual inputs (described below), namely score
map information and IoU maps. Figure 2 shows the overall network. In our base
Tnet the first stage applies 512 11 × 11 filters over each input layer, and 512
1 × 1 filters are applied on layers 2 and 3. ReLU non-linearities are used after
each layer but the last one. Neither max-pooling nor local normalization is used.

The base network is trained and tested in a fully convolutional fashion. It
uses the same information as GreedyNMS, and does not access the image pixels
directly. The required training data are only a set of object detections (before

Fully convolutional network
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Sparse Score Maps

Detection scores in 2D grid

Sparse detections from Faster R-CNN

→ Zero loss weights in empty regions
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Sparse Score Maps

Detection scores in 2D grid

Sparse detections from Faster R-CNN

→ Zero loss weights in empty regions
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Evaluation
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Evaluation

Fusion Evaluation

Training set recorded on a public site (VIENNA)

447 images, 1194 annotations

Test set recorded on the campus (CAMPUS)

321 images, 832 annotations

C. Ertler, H. Possegger, M. Opitz and H. Bischof, ICG
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Evaluation

Fusion Evaluation

Compare RGB network with different fusion networks

Model AP
Mid-layer Late

RGB-only 81.95 % (0.35)
HAG-only 52.05 % (3.55)

Sum fusion 88.60 % (1.00) 87.55 % (0.65)
Average fusion 87.00 % (0.00) 87.70 % (0.90)
Max fusion 89.89 % (0.20) 87.65 % (0.75)
Conv fusion 86.35 % (0.55) 85.60 % (1.10)
Inception fusion 88.85 % (0.85) —

C. Ertler, H. Possegger, M. Opitz and H. Bischof, ICG
7th February 2017
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Evaluation

NMS Evaluation

Compare Tnet with different greedy NMS thresholds
Test set is split into samples with and without
overlapping ground truth boxes

Model AP
All Overlapping Non-overlapping

Tnet 90.10 % 87.00 % 95.90 %

NMS 0.9 41.20 % 37.30 % 49.40 %
NMS 0.8 67.80 % 61.80 % 76.40 %
NMS 0.7 85.60 % 78.10 % 93.40 %
NMS 0.6 89.70 % 82.30 % 95.40 %
NMS 0.5 88.30 % 81.00 % 95.90 %
NMS 0.4 87.10 % 79.30 % 95.30 %

C. Ertler, H. Possegger, M. Opitz and H. Bischof, ICG
7th February 2017
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Evaluation

Fusion Evaluation — Qualitative Results

Nearby pedestrians

RGB-only Mid-layer Max Fusion
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Fusion Evaluation — Qualitative Results

Generalization

RGB-only Mid-layer Max Fusion
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Fusion Evaluation — Qualitative Results

Bounding box regression

RGB-only Mid-layer Max Fusion
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Evaluation

NMS Evaluation — Qualitative Results

False positives

NMS 0.6 Tnet
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NMS Evaluation — Qualitative Results

Double detections

NMS 0.6 Tnet
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NMS Evaluation — Qualitative Results

False negatives

NMS 0.6 Tnet
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Conclusion

Conclusion

Modality fusion in Faster R-CNN model

Mid-layer fusion has better performance and is less
complex than late fusion

Replace Greedy NMS by learned model

Eliminates the constant threshold

C. Ertler, H. Possegger, M. Opitz and H. Bischof, ICG
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Questions

Thank You
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Appendix

NMS Evaluation — Precision vs. Recall
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Appendix

Runtime Performance

Experiments on NVIDIA GTX 970 with 4GB

RGB: 67 ms

Mid-layer fusion: 87 ms

Late fusion: 119 ms

→ Mid-layer fusion only 20 ms slower

Greedy NMS: 14 ms

Tnet: 28 ms
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Additional Qualitative Examples
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