

Pedestrian Detection in RGB-D Images from an Elevated Viewpoint

C. Ertler, H. Possegger, M. Opitz and H. Bischof, Institute for Computer Graphics and Vision

7th February 2017

Motivation

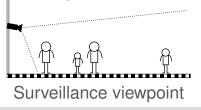
- Traffic light control system
- Predict intent of pedestrians
 - Want to cross the road?
 - Direction?
- Pedestrian detection as pre-processing step

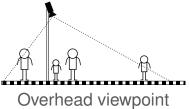
Camera Setup

 Stereo cameras mounted on traffic light filming downwards

\rightarrow disparity data

Overhead viewpoint vs. classical surveillance viewpoint





Viewpoint Challenges

VS.

Main Contributions

- Pedestrian detector for overhead views
- Faster R-CNN for RGB-D images
 - Two modality fusion architecturess
 - Several modality fusion layers

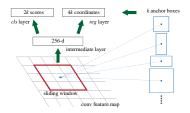
 Improve results with trained non-maximum suppression (NMS)

Faster R-CNN (Ren et al. 2015)

- Use classification networks for detection
- CNN features are used in two stages
 - Region Proposal Network (RPN)
 Region Pooling → Region Classification

Faster R-CNN (Ren et al. 2015)

- Use classification networks for detection
- CNN features are used in two stages
 - Region Proposal Network (RPN)
 Region Pooling → Region Classification



Faster R-CNN (Ren et al. 2015)

- Use classification networks for detection
- CNN features are used in two stages
 - Region Proposal Network (RPN)
 Region Pooling → Region Classification

Incorporating Disparity Data

- Transfer learning between modalities
 - Zeiler & Fergus network
- Disparity depends on position relative to camera

ightarrow Data variation

- Solution: Height above ground (HAG) encoding
 - Estimate ground plane of the scene
 - Compute HAG
 - Apply colormap to HAG data

Incorporating Disparity Data

- Transfer learning between modalities
 - Zeiler & Fergus network
- Disparity depends on position relative to camera

ightarrow Data variation

- Solution: Height above ground (HAG) encoding
 - Estimate ground plane of the scene
 - Compute HAG
 - Apply colormap to HAG data

Incorporating Disparity Data

- Transfer learning between modalities
 - Zeiler & Fergus network
- Disparity depends on position relative to camera

ightarrow Data variation

- Solution: Height above ground (HAG) encoding
 - Estimate ground plane of the scene
 - Compute HAG
 - Apply colormap to HAG data

Height above Ground Encoding

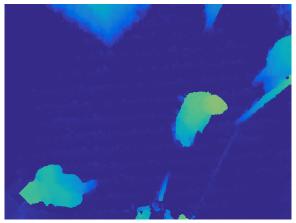
Stereo Images

Height above Ground Encoding

Disparity Map

Height above Ground Encoding

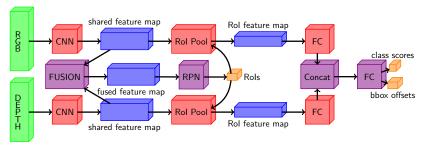
Colored HAG



Late Fusion

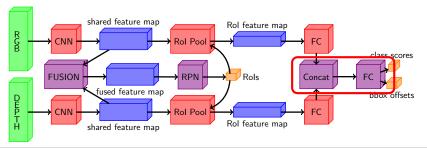
2 independent network streams

- Fusion after last hidden layer
- Concatenate feature maps and learn additional fully-connected fusion layer



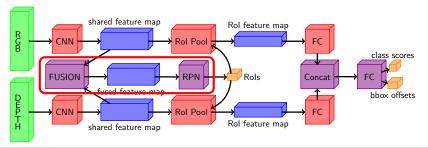
Late Fusion

- 2 independent network streams
- Fusion after last hidden layer
- Concatenate feature maps and learn additional fully-connected fusion layer



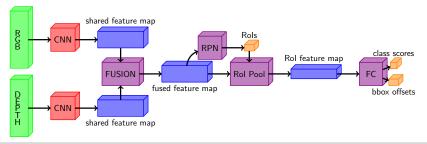
Late Fusion

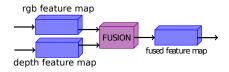
- 2 independent network streams
- Fusion after last hidden layer
- Concatenate feature maps and learn additional fully-connected fusion layer



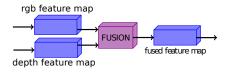
Mid-layer Fusion

- Fusion of mid-layer representations
- Single stream after convolutional layers
- Number of parameters significantly reduced
 - 117 M vs. 45 M



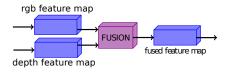


- Parameterless fusion
 - Average
 Sum
 Max
- Parametrized fusion
 - 1 × 1 Convolution > concatenated features
 Inception tower



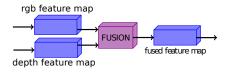
- Parameterless fusion

 - Average
 Sum
 element-wise
 - Max
- Parametrized fusion
 - 1 × 1 Convolution concatenated features
 Inception tower



- Parameterless fusion

 - Average
 Sum
 element-wise
 - Max
- Parametrized fusion
 - 1 × 1 Convolution
 Inception tower
 concatenated features



- Parameterless fusion

 - Average
 Sum
 element-wise
 - Max
- Parametrized fusion
 - 1 × 1 Convolution
 - Inception tower

12

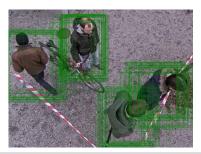
Learning Non-Maximum Suppression

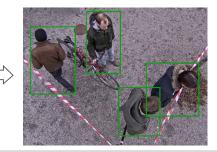
Greedy NMS

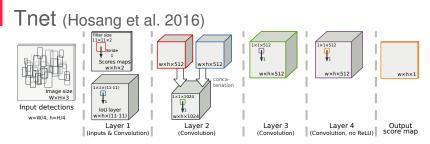
- De-facto standard in object detection
- Need to choose constant overlap threshold

 \rightarrow heavily tuned to validation set

Trade-off between recall and precision

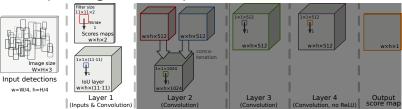






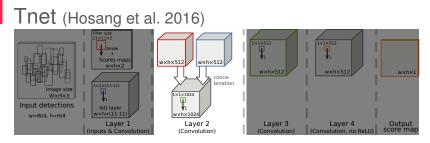
- Fully convolutional network
- Inputs are detection boxes encoded as
 - Score maps
 - IoU of the boxes

→ No post-processing needed



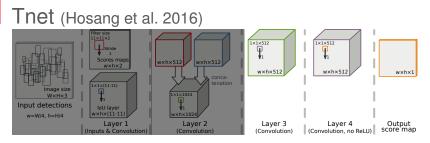
- Fully convolutional network
- Inputs are detection boxes encoded as
 - Score maps
 - IoU of the boxes

→ No post-processing needed



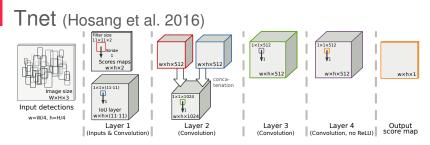
- Fully convolutional network
- Inputs are detection boxes encoded as
 - Score maps
 - IoU of the boxes

→ No post-processing needed



- Fully convolutional network
- Inputs are detection boxes encoded as
 - Score maps
 - IoU of the boxes

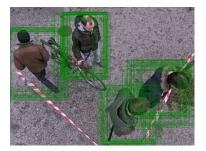
→ No post-processing needed

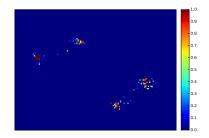


- Fully convolutional network
- Inputs are detection boxes encoded as
 - Score maps
 - IoU of the boxes
- Output is final score map after suppression

 \rightarrow No post-processing needed

- Sparse Score Maps
 - Detection scores in 2D grid
 - Sparse detections from Faster R-CNN
 - \rightarrow Zero loss weights in empty regions



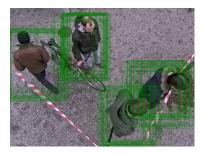


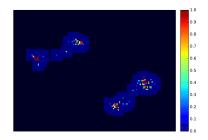
C. Ertler, H. Possegger, M. Opitz and H. Bischof, ICG 7th February 2017

Sparse Score Maps

- Detection scores in 2D grid
- Sparse detections from Faster R-CNN

\rightarrow Zero loss weights in empty regions





Evaluation

Fusion Evaluation

- Training set recorded on a public site (VIENNA)
 - 447 images, 1194 annotations
- Test set recorded on the campus (CAMPUS)
 - 321 images, 832 annotations

Fusion Evaluation

Compare RGB network with different fusion networks

Model	AP		
	Mid-layer	Late	
RGB-only	81.95 % (0.35)		
HAG-only	52.05 % (3.55)		
Sum fusion	88.60 % (1.00)	87.55% (0.65)	
Average fusion	87.00% (0.00)	87.70% (0.90)	
Max fusion	89.89% (0.20)	87.65% (0.75)	
Conv fusion	86.35% (0.55)	85.60 % (1.10)	
Inception fusion	88.85% (0.85)		

NMS Evaluation

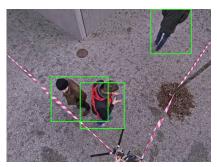
- Compare Tnet with different greedy NMS thresholds
- Test set is split into samples with and without overlapping ground truth boxes

Model	AP		
	All	Overlapping	Non-overlapping
Tnet	90.10%	87.00%	95.90 %
NMS 0.9	41.20%	37.30 %	49.40%
NMS 0.8	67.80%	61.80%	76.40%
NMS 0.7	85.60 %	78.10%	93.40%
NMS 0.6	89.70%	82.30 %	95.40%
NMS 0.5	88.30%	81.00%	95.90 %
NMS 0.4	87.10%	79.30 %	95.30%

Fusion Evaluation — Qualitative Results

Nearby pedestrians

RGB-only



Mid-layer Max Fusion

Fusion Evaluation — Qualitative Results

Generalization

RGB-only

Mid-layer Max Fusion

Fusion Evaluation — Qualitative Results

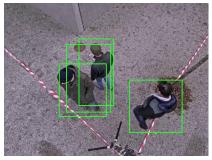
Bounding box regression

RGB-only

Mid-layer Max Fusion

NMS Evaluation — Qualitative Results

False positives

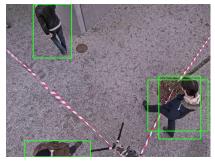


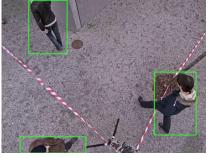


Tnet

NMS Evaluation — Qualitative Results

Double detections



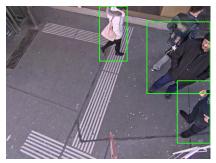


NMS 0.6

Tnet

NMS Evaluation — Qualitative Results

False negatives



NMS 0.6

Tnet

- Modality fusion in Faster R-CNN model
- Mid-layer fusion has better performance and is less complex than late fusion
- Replace Greedy NMS by learned model
- Eliminates the constant threshold

Conclusion

Questions

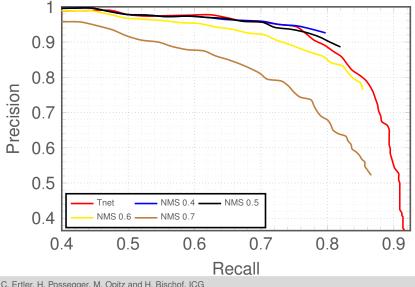
Thank You

Bibliography I

- Jan Hosang, Rodrigo Benenson, and Bernt Schiele. "A Convnet for Non-Maximum Suppression". In: Proceedings of the German Conference on Pattern Recognition (GCPR). 2016.
- [2] Shaoqing Ren et al. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". In: Proceedings of the Conference on Neural Information Processing Systems (NIPS). 2015.

Appendix

NMS Evaluation — Precision vs. Recall



- **Runtime Performance**
 - Experiments on NVIDIA GTX 970 with 4GB
 - BGB: 67 ms
 - Mid-layer fusion: 87 ms
 - I ate fusion: 119 ms

 \rightarrow Mid-layer fusion only 20 ms slower

- Greedy NMS: 14 ms
- Tnet: 28 ms

