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2 Pedestrian Traffic Lights we’re used to

Many crossings are on-demand only

Push-button systems
Pedestrians push, but walk away
Pedestrians push, but cross on red light
Many people don’t use the button at all
Some push after crossing

Sub-optimal for traffic flow
Unnecessary slowdown of motorists
Fixed length crossing period

Frequent replacement
Vandalism & impatient pedestrians
Substantial hardware costs per year



2 Pedestrian Traffic Lights we’re used to

Many crossings are on-demand only

Push-button systems
Pedestrians push, but walk away
Pedestrians push, but cross on red light
Many people don’t use the button at all
Some push after crossing

Sub-optimal for traffic flow
Unnecessary slowdown of motorists
Fixed length crossing period

Frequent replacement
Vandalism & impatient pedestrians
Substantial hardware costs per year



3 Computer Vision to the Rescue

Goals
Where is a person heading to and
will she cross?
Optimize traffic light schedule

Trigger based on intent
Reduce waiting times
Large groups take longer
to clear safely

Commercial products
Constrained detection region
e.g. AGD stereo sensor (2 × 3 m)
Non-standard image modalities
e.g. FLIR thermal imaging sensors
They only sense presence, but cannot predict the intent

[www.agd-systems.com]
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4 System Overview

Large field-of-view
Top-mounted monocular camera
Enables intent prediction

Multi-object detection & tracking
Compressed detection model
Geometric cues for tracking

Intent prediction
Most likely destination
Schedule traffic light
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5 System Requirements

IPC

Hardware
Must process locally
Rough environment
Limited space inside switch box
Components certified for 24/7 operation
Deal with frequent voltage pikes/drops

Software
Robust, accurate & efficient
Extra system monitoring
Catalog of countermeasures



6 Multi-Object Detection & Tracking

Accuracy/runtime trade-off
Single Shot MultiBox detector [1]
Backbone: compressed AlexNet [2,3]
Optimized implementation
with AVX2 instructions

Non-standard viewpoints
ImageNet pre-training
Application-specific fine-tuning

Tracking-by-detection
Kalman filters, constant velocity
Geometric cues & closed-world
assumptions [4]

Our traffic light

Caltech Dataset
[1] Liu et al. SSD: Single Shot MultiBox Detector. ECCV’16

[2] Krizhevsky et al. ImageNet Classification with Deep Conv. Neural Networks. NIPS’12

[3] Romero et al. FitNets: Hints for Thin Deep Nets. ICLR’15

[4] Possegger et al. Occlusion Geodesics for Online Multi-Object Tracking. CVPR’14
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7 Intent Prediction

Where is a person headed to?

Dynamics-based motion extrapolation
Exploit inertia assumption
Leverage instance-specific motion model

Global motion model
Learn destination statistics over time
Accumulate priors for observed rajectory

Combined prediction



8 Global Motion Model

Robust detection on large field-of-view

Douglas, Peucker. Algorithms for the Reduction of the Number of Points Required to
Represent a Digitized Line or Its Caricature. Cartographica 10(2), 1973.
Bresenham. Algorithm for Computer Control of a Digital Plotter. IBM Systems Journal 4(1),
1965.
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8 Global Motion Model

Remove outliers, reduce jitter
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8 Global Motion Model

Discretize region-of-interest & rasterize trajectory

Douglas, Peucker. Algorithms for the Reduction of the Number of Points Required to
Represent a Digitized Line or Its Caricature. Cartographica 10(2), 1973.

Bresenham. Algorithm for Computer Control of a Digital Plotter. IBM Systems Journal 4(1),
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8 Global Motion Model

Compute cell transitions and accumulate trajectory priors

Douglas, Peucker. Algorithms for the Reduction of the Number of Points Required to
Represent a Digitized Line or Its Caricature. Cartographica 10(2), 1973.
Bresenham. Algorithm for Computer Control of a Digital Plotter. IBM Systems Journal 4(1),
1965.



9 Evaluation
Custom Dataset

Long-term study in Vienna (Austria)
Both sides of a busy road
Over 3,000 pedestrians per day

Recorded 1 month of:
Manual push-button requests
(Our) intent-based triggers
Periodic snapshots (every 30 minutes)



10 Evaluation
Dataset Challenges?

Illumination

Occlusions Blinding lights

Appearance variations Weather Low light at night
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11 Evaluation
Detector Performance

Manually annotated over 2,000 images (60/10/30 split)

0 5 10 15 20 25 30

0.80

0.85

0.90

0.95
IP camera frame rate

MobileNet V1

VGG16 reduced

ZFNet reduced

Our AlexNet compressed

Inception V2

Frames per second [Hz] on Intel i7

A
ve

ra
ge

pr
ec

is
io

n

Ours
Tensorflow
Intel Caffe



12 Intent Prediction
Dominant Motion Directions

Validated 80,000 recorded trajectories
Shown clusters cover the majority
Left: will a person cross or pick up her car?



13 Intent Prediction
Prediction Accuracy

Multi-class classification problem (predict correct destination)
Confidence for predicted intent
Threshold confidence to compute average accuracy

Method Acc0.2 Acc0.5 Acc0.65 Acc0.8

EX MODEL 0.645 0.488 0.232 0.036
GM MODEL 0.977 0.969 0.924 0.492

COMBINED MODEL 0.978 0.970 0.932 0.712



14 Intent Prediction
Long-term Proof-of-Concept

Time difference between our system and corresponding
push-button triggers
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15 Intent Prediction
Reported Crossing Requests

Average trigger frequency per hour
Our system reports 1 request per pedestrian
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16 Conclusion

Schedule pedestrian traffic lights based on intent
Reliably predict crossing requests
Currently 3–4 sec before push-button
Additionally report how many people wait
Paved the road for further traffic flow optimizations

Recently deployed a new system
Active Infrared LEDs to improve night vision
Processing board adjustments
Additional runtime improvements



17 Thank You!

Questions?
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19 Quality Measure: Intent Prediction
Last Point of Wrong Decision

Custom quality measure for intent prediction:
Last Point of Wrong Decision
Last Second of Wrong Decision

Denotes the last time step a trajectory’s intent prediction was wrong

Motion Model mLPWD [%] mLSWD [sec]

EXTRAPOLATION MODEL 0.8508 14.05
GLOBAL MOTION MODEL 0.2089 2.06

COMBINED MODEL 0.1846 1.93



20 Quality Measure: Exemplary Intent Predictions
Last Point of Wrong Decision

Trajectory starts at , ends at
Last Point of Wrong Decision

Extrapolation Global Motion Combined Model



21 Recall Vision-based versus Push-button
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22 Manual Verification

Periodic snapshots (every 30 minutes)
Manual annotation

TP Pedestrian wants to cross, correctly identified
TN No pedestrian wants to cross, no trigger
FP No pedestrian wants to cross, incorrectly triggered
FN Missed a pedestrian who wants to cross

#{samples} TP TN FP FN Recall ↑ Precision ↑

TRAFFIC LIGHT 1 1,578 378 1,186 11 3 0.9921 0.9717
TRAFFIC LIGHT 2 1,569 402 1,149 16 2 0.9950 0.9617

BOTH 3,147 780 2,335 27 5 0.9936 0.9665
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