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In the following, we provide additional experimental results to demonstrate the perfor-
mance of our method, Detection Refinement for Tracking (DRT). This supplementary mate-
rial includes two parts. First, we show the tracking results on the recent MOT20 [4] dataset
and compare our method with the baseline method, FAIR [11]. Second, we compare the
detection results of our DRT on MOT17Det detection dataset [5] with other methods.

1 Results on MOT20 dataset

MOT20 [4] is a new benchmark for multi-object tracking which consists of 8 challenging
sequences. Compared with MOT16 & 17 [5], MOT20 has much more crowded scenes and
complex backgrounds. Furthermore, the test sets of MOT20 include another two unknown
scenes, which are different from the scenes in the training dataset, to measure the general-
ization capabilities of detectors and trackers.

Our training settings and procedure are the same as described in the main paper. We use
the detections of FAIR as input for our DRT-net for this comparison. The MOT20 results are
shown in Table 1.

Our DRT achieves 2.5% improvement of MOTA compared to FAIR [11]. The improve-
ments arise from that our DRT can perform well in reducing false positives. The ID switches
are slightly higher than FAIR because the trackers may drift between the occluded targets
and foreground people in occlusion areas.
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Method MOTA↑ IDF1↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓ Hz↑
SORT [1] 42.7 45.1 78.5 16.7 26.2 27521 264694 4470 57.3
TransCenter [8] 58.3 46.8 79.7 35.7 18.6 35959 174893 4947 1
FAIR [11] ∗ 61.8 67.3 78.6 68.8 7.6 103440 88901 5243 13.2
DRT (Ours) ∗ 64.3 58.7 79.1 60.2 8.9 70794 108316 5389 0.5

Table 1: Comparison with other state-of-the-art trackers on MOT20. All methods are under
the "private detector" protocol. ↑/↓ indicates that higher/lower scores correspond to better
performance. Methods marked with the same sign use the same detector.

Method AP↑ MODA↑ MODP↑ FAF↓ TP↑ FP↓ FN↓ Recall↑ Precision↑ F1↑
FRCNN [6] 0.72 68.5 78.0 1.7 88601 100881 25963 77.3 89.8 83.1
SDP [9] 0.81 76.9 78.0 1.3 95699 7599 18865 83.5 92.6 87.9
YTLAB [2] 0.89 76.7 80.2 2.8 104555 16685 10009 91.3 86.2 88.7
KDNT [10] 0.89 67.1 80.1 4.8 105473 28623 9091 92.1 78.7 84.8
F_ViPeD_B [3] 0.89 -14.4 77.4 20.8 106698 123194 7831 93.2 46.4 62.0
GNN_SDT [7] 0.89 78.1 81.3 2.4 103895 14397 10669 90.7 87.8 89.2
DRT (Ours) 0.88 83.2 81.3 1.4 103909 8544 10655 90.7 92.4 91.5

Table 2: Comparison with state-of-the-art object detection approaches on MOT17Det. ↑/↓
indicates that higher/lower scores correspond to better performance.

2 Results on MOT17Det test set
Since our method is based on detection refinement, we also test our results on the MOT17
detection dataset, which uses the same sequences as MOT 16/17 tracking datasets. The
detection results are shown in Table 2.

Compared with other state-of-the-art detectors, our DRT achieves impressive detection
performance. The average precision (AP) of 0.88 is much higher than that of traditional
detection methods, SDP [9] and Faster RCNN [6]. The performance is also competitive to
recent detection methods in two aspects. On the one hand, it achieves a good balance be-
tween recalling as many targets as possible and introducing less false postives. On the other
hand, the detection accuracy and precision are much better than other detection methods,
indicating the capabilities of DRT in refining detections.
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