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Abstract

Object detection is one of the most difficult computer vision tasks. On the
one hand, appearance and pose of the objects of interest may vary consider-
ably. On the other hand, illumination changes, bad lighting conditions, and
other external influences impose additional challenges. In order to overcome
these problems, robust detectors cannot rely on the information extracted by
raw pixel values alone. Thus, different feature types are used, which encode
characteristical image information.
This thesis evaluates common feature representations for pedestrian and car
detection. We focus on appearance-based features, which encode static im-
age information, such as differences of grey values, edge information, as well
as higher statistical moments. Additionally, we evaluate motion-based fea-
tures, which operate on the information provided by the optical flow estimated
throughout consecutive image frames. In our experiments, we use boosting to
select the best-performing features for the corresponding detection task. For
comparison, we evaluate the different feature types on several surveillance se-
quences with a single static camera.
Our experiments show that motion-based features alone cannot achieve good
detection performance. Nevertheless, a combination of motion features and
appearance features allows to build robust detectors with good performance.
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Zusammenfassung

Objekterkennung stellt aufgrund unterschiedlichster Herausforderungen eine
der anspruchsvollsten Aufgaben im Bereich des Maschinellen Sehens dar. Ei-
nerseits kann das Erscheinungsbild der zu detektierenden Objekte, wie zum
Beispiel Personen, mitunter stark variieren. Andererseits erschweren wech-
selnde Belichtungsverhältnisse, Schatteneffekte und andere externe Einflüsse
die Detektion zusätzlich. Robuste Detektoren verwenden Abstraktionen, so ge-
nannte Features (Bildmerkmale), da eine Objektklasse nicht effizient mit rei-
nen Pixelwerten der Farbkanäle modelliert werden kann. Diese Arbeit evaluiert
unterschiedliche Feature Repräsentationen für die Klassifikation von Personen
und Autos. Die behandelten Features extrahieren unterschiedliche Bildinforma-
tionen, wie zum Beispiel Grauwertdifferenzen, Gradienten als auch statistische
Momente höherer Ordnung.
Um die Qualität der trainierten Objektdetektoren zu verbessern, verwenden
wir zusätzliche Bewegungsfeatures, die in ein bestehendes Framework integriert
werden. Diese Features abstrahieren Informationen aus dem optischen Fluss,
der aus aufeinanderfolgenden Bildsequenzen bestimmt werden kann. Da die
Bewegung eines Objektes innerhalb der Szene allein meist nicht ausreichend
ist um dieses zu klassifizieren, werden die Bewegungsfeatures mit anderen Re-
präsentationen kombiniert, um so die Ergebnisse der Detektoren zu verbessern.
Wir verwenden Boosting, um die besten Features zur Detektion zu selektieren.
Die Features werden anhand der Ergebnisse auf unterschiedlichen Szenen ver-
glichen. Jede Szene wird von einer statischen Kamera überwacht.
Die experimentellen Resultate zeigen, dass Bewegungsfeatures alleine nicht
ausreichen, um einen robusten Detektor zu trainieren. Allerdings ermöglicht
die Kombination von statischen und Bewegungsfeatures die Konstruktion von
Detektoren mit guten Ergebnissen auf den Testsequenzen.

Schlüsselwörter:
Computer Vision, Objekterkennung, Feature Selektion, Evaluation
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1 Introduction

Object detection, in general, is an important but challenging task. On the
one hand, appearance and pose of an object may vary considerably, e.g.
considering human clothing and shape. On the other hand, illumination
effects, shadows, and dynamic backgrounds impose scene-specific challenges.
The goal would be to overcome all of these challenges and to provide robust
results. However, collecting large datasets of representative object samples
is time-consuming and intricate. Thus, training data is limited in general,
i.e. the dataset cannot contain a sample for every possible variation of an
object’s appearance. Hence, the complete knowledge about an object class
cannot be modelled by pure pixel values alone [VJ02]. Therefore, feature
representations are used, which encode several kinds of image content, such
as gradient information, grey value differences, various filter respones, and
the like.

This thesis evaluates feature representations which are commonly used
for object detection, i.e. Haar features, Local Binary Patterns, covariance
features, and Histograms of Oriented Gradients. Additionally, we implement
motion-based Oriented Histograms of Optical Flow as proposed by Dalal
et al. [DTS06], which operate on flow components extracted from consec-
utive image frames. Since motion can be characteristic for an object class,
motion-based features can be used to improve the detection performance
in combination with appearance-based features. Our evaluation will focus
on pedestrian and car detection. Pedestrians are known to be one of the
most challenging classes for object detection, mainly because appearances
and poses vary considerably [WS08]. Cars on the other hand have less varia-
tions in appearance and shape. Thus, we will compare popular feature types
on two very diverse object classes.

Since boosting can be used for efficient feature selection, we apply it
to train detectors for evaluation [GB06]. The feature representations are
evaluated on surveillance scenarios with a single static camera. Thus, camera
motion is cancelled out, which simplifies the detection challenge. Therefore,
our experimental comparison will show which features encode pedestrians
and cars reasonably well.

This thesis is organized as follows. First, section 2 discusses commonly
used feature types for detection tasks. Second, we will describe the appli-
cation of boosting in order to build the detectors for evaluation in section
3. Next, section 4 will review implementation details and present results on
pedestrian and car detection. Finally, section 5 concludes our work.
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2 Features

Features are an abstraction of image information crucial for any kind of
image-based analysis. A lot of different feature types are commonly used to
encode domain knowledge such as gradient information, variations of local
illumination, and so forth. Since the training dataset has a limited size,
these cues cannot be modelled directly by raw pixel values [VJ02]. On the
other hand, features also simplify the detection task by reducing the intra-
class variability and increasing the inter-class variability of objects within an
image [LM02].

In this section we will discuss both appearance-based and motion-based
features. Appearance-based features consider object shape or texture in-
formation, whereas motion-based features operate on the flow information
provided by consecutive image frames. In the following we discuss Haar fea-
tures, Local Binary Patterns covariance-based features, and Histograms of
Oriented Gradients. All these features are based on object appearance. The
experiments by Dalal et al. [DTS06] and Viola et al. [VJS03] show that
the combination of static appearance and dynamic motion information im-
proves detection performance. Therefore, we will describe the motion-based
Oriented Histograms of Optical Flow features in order to introduce an addi-
tional cue.

2.1 Haar Features

Haar features have been introduced by Papageorgiou et al. [POP98]. These
features can be used to model simple image structure such as edges, bars, and
lines [VJ02]. Calculation of Haar features can be done very efficiently and
thus allows to build fast object detectors which can handle real time detec-
tion. Haar features compute differences of sums of pixels between rectangles
within the input image. The rectangular regions can be of arbitrary size.
However, Viola and Jones propose to use adjacent rectangles of equal size
[VJ02]. Unequally sized regions can be used if each rectangle is normalised
before [SHB07]. Figure 1 illustrates the different rectangle types described
by Viola and Jones. Two-rectangle features, as illustrated in figure 1(a) and
1(b), mostly encode edges, while three-rectangle features, illustrated in figure
1(c), can be used to model lines [LM02].

To compute Haar features efficiently, Viola and Jones [VJ02] introduced
an auxiliary image representation, called integral image. The value of the
integral image ii at position (x, y) is the sum of all pixels of the original
image I that are located above and to the left of (x, y). The integral image
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(a) (b) (c) (d)

Figure 1: Samples of two-, three-, and four-rectangle Haar features. The
value of each Haar feature is the difference between the sum of the pixels
within the black rectangles and the sum of the pixels within the white rect-
angles. Figures 1(a) and 1(b) show vertical and horizontal two-rectangle
features. Figure 1(c) shows a vertical three-rectangle feature, and figure 1(d)
a four-rectangle feature. Illustrations taken from [VJ02].

at position (x, y) is defined as

ii(x, y) =
∑

x′≤x,y′≤y

I(x′, y′).

The integral image can be created by a single row-by-row pass over the
original image and allows fast computation of any type of rectangular features
[VJ02]. Once the representation has been computed, the sum of all pixels
within any rectangle can be calculated by a constant number of lookups on
the integral image. Figure 2 illustrates the computation of the sum of all
pixels within a rectangle. The integral image representation is very similar
to the Summed Area Table defined by Crow in [Cro84].

Since Haar features are defined by vertically and horizontally oriented
rectangles, they have a limited flexibility. However, the efficient computa-
tion compensates for this drawback [VJ02]. Lienhart and Maydt propose an
extended set of Haar features that additionally consists of 45◦ rotated rect-
angles in [LM02]. Figure 3 illustrates a few examples of these features. The
experiments by Lienhart and Maydt show that detectors using the extended
feature set achieve 10% less false positives than detectors using the basic
set without rotated Haar features. The hit rates at both experiments were
almost the same [LM02]. In order to compute the rotated Haar features ef-
ficiently, Lienhart and Maydt defined the Rotated Summed Area Table as an
extension to the integral image representation. This representation can be
calculated by two passes over the input image. After this representation is
computed, all sums of pixels within 45◦ rotated rectangles can be computed
by a constant number of array references. The better false positive rate ob-

3



Figure 2: The integral image representation. The value ii(x1, y1) is the sum of
all pixels inside rectangle A. The value ii(x2, y2) is the sum of all pixels inside
the rectangle A+ B. Thus, the sum of all pixels within D can be computed as
ii(x4, y4)− ii(x3, y3)− ii(x2, y2) + ii(x1, y1). Illustration based on [VJ02].

(a) (b)

Figure 3: Samples of 45◦ rotated Haar features. Figure 3(a) shows two-
rectangle edge features, while 3(b) shows three-rectangle line features. Illus-
trations taken from [LM02].

viously compensates for the additional computation effort required to create
the auxiliary representation.

2.2 Local Binary Patterns

Local Binary Patterns (LBP) were introduced by Ojala et al. [OPH96] in
order to describe image textures. These features provide good performance
and are resistant against monotonic changes of illumination. Ojala et al.
show that LBP features achieve better classification results on textures than
grey-level difference methods, covariance measures, and Laws ’ texture mea-
sures.

The LBP calculation thresholds the grey values within a predetermined
neighborhood with the value of the center pixel. The definition by Ojala et
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Figure 4: Schema of calculating the LBP code of a pixel using a 3 × 3
neighborhood. In the illustrated example, the value of the LBP feature
would be 1 + 32 + 128 = 161. Illustration based on [HPH04].

al. [OPH96] proposes a 3 × 3 neighborhood. A more general version of the
LBP feature uses a circularly symmetric neighborhood [HPH04]. The result
is encoded as a binary number, so called LBP code. More formally, the value
of the LBP at position (xc, yc) can be defined as

LBP (xc, yc) =
P−1∑
p=0

s(gp − gc)2p,

where gc represents the grey value of the center pixel at (xc, yc) and gp is
the grey value of the P neighboring pixels. The function s(g) is defined to
threshold the grey value difference as follows

s(g) =

{
1 g ≥ 0

0 g < 0
.

Figure 4 illustrates the computation of the LBP value for one pixel. The LBP
codes of all pixels within an image block are used to vote into the bins of a
histogram. This histogram can be used as a texture descriptor for detection
tasks. [HPH04]

Heikkilä et al. [HPH04] show that LBP features can be successfully ap-
plied to detect moving objects. Therefore, they introduce an adaptive back-
ground subtraction method. Their algorithm using LBP features clearly
outperforms other histogram based background subtraction methods.

2.3 Covariance Features

Covariance features were introduced by Tuzel et al. [TPM06]. These fea-
tures can be used to efficiently combine raw pixel information, e.g. RGB
or intensity values, and higher order image moments, e.g. first and second
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order gradients. This feature type encodes spatial and statistical image in-
formation as well as correlation relations between feature values. Tuzel et al.
propose that a single covariance matrix computed over a region of interest is
enough to match it in several poses and views.

Given an input image I of dimension w × h, a d-dimensional feature
representation F of dimension w × h × d can be extracted. The covariance
matrix Σr ∈ Rd×d for an arbitrary N ×M sized rectangular region R ⊂ F
can thus be calculated by

ΣR =
1

NM − 1

N∑
x=1

M∑
y=1

(F (x, y)− µ) (F (x, y)− µ)T ,

where µ ∈ Rd is the mean vector. The subtraction of this mean vector
leads to zero-mean normalisation and provides resistance against changes in
illumination [KMB09]. The mean vector of a region of interest is defined as

µ =
1

NM

N∑
x=1

M∑
y=1

F (x, y).

The diagonal elements of the covariance matrix ΣR contain the variance
of each source channel, the off-diagonal elements represent the correlation
between the involved image statistics [KMB09]. Tuzel et al. propose to use a
9-dimensional feature vector containing the pixel location (x, y), RGB values,
and the norm of the first and second order intensity derivatives with respect
to x and y [TPM06]. Thus, the covariance matrix describing a region of
interest would be ΣR ∈ R9×9.

Covariance matrices do not lie on Euclidean space. Thus, the originally
proposed features cannot be used with standard machine learning algorithms
[TPM06]. Operations such as distance computation have to be carried out
using Riemannian geometry, which requires increased computational effort.
Therefore, Kluckner et al. [KMB09] propose a method for computing an
efficient approximation on Euclidean space which can be directly used in
machine learning strategies. The concept of their approximation is to choose
a representative set of vectors from two given distributions. This set of
vectors allows to apply the Euclidean distance measure. The covariance
matrix Σ′R of this representative set must be equivalent to ΣR. This means
that the representative set and the region of interest R have the same second
order statistics. The set of columns of a matrix A that satisfies ΣR = AAT

is equivalent to R in terms of second order statistics [HCS+09]. A matrix
can be factorized if it is nonsingular. Since most covariance matrices are
semi-positive and definite, factorization can be applied [HCS+09]. Singular
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covariance matrices only occur as an extremal case where a feature has a
constant value for each pixel inside a region of interest [HCS+09]. Kluckner et
al. propose to apply the Cholesky factorization to decompose the covariance
matrix ΣR into LLT , where L is a lower triangular matrix. Although there
exist several methods for matrix factorization, the Cholesky decomposition
requires the lowest number of operations on symmetric and semi-positive
definite matrices [HCS+09, KMB09]. We use the approximation proposed by
Kluckner et al. throughout our experiments.

A similar approximation of covariance matrices on Euclidean space has
been proposed by Hong et al. [HCS+09]. Their basic idea is to create a set
of points within the Euclidean space, which covariance matrix is equivalent
to the covariance matrix of the region of interest within the image. The set
of points should be of low dimensionality and is called Sigma Set. As well as
Kluckner et al., they propose to apply the Cholesky decomposition for better
efficiency.

2.4 Histograms of Oriented Gradients

Histograms of Oriented Gradients (HOG) were introduced by Dalal and
Triggs [DT05]. These features are based on the distribution of local edge
direction and gradient magnitudes. This distribution describes the object
shape and appearance without considering the precise location of the gradi-
ents. However, the knowledge of the exact edge positions is not relevant for
good detection performance. HOG features reduce sensitivity to illumina-
tion variations and can also detect small changes in an object’s appearance.
Although these features provide good detection performance, they cannot be
used for fast real time applications on arbitrary hardware. [DT05]

The first step in calculating HOGs is to normalise the input image and
compute first order gradients. Although the normalisation of the input im-
age is optional, Dalal and Triggs propose to apply it to achieve improved
resistance to illumination variations. This can be explained by the fact that
texture strength is typically proportional to surface illumination [DT05]. Fur-
thermore, Dalal and Triggs suggest to use simple [−1, 0, 1] derivative masks
to calculate the image gradients. Compared to other masks, e.g. 3 × 3 So-
bel masks, these simple ones perform best with the proposed HOG features.
Next, the image window is divided into small spatial regions, so called cells.
Each cell accumulates a histogram of local edge orientations over all pixels
within the cell. The allowed gradient angle range can be predetermined to
either [0◦ , 180◦ ] or [0◦ , 360◦ ]. The choice depends on the objects to clas-
sify. The limited range [0◦ , 180◦ ] yields better performance for pedestrian
detection whereas the full 360◦ range achieves better results on the detection
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Figure 5: Overview of the HOG feature extraction process. The first order
gradients are computed based on the gamma normalised input image. Gra-
dient orientations and magnitudes are then used to vote into cell histograms.
Next, overlapping cells are normalised and combined into blocks. The final
feature vector is built by combining the block histograms. Illustration taken
from [Dal06].
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of cars and motorbikes [DT05]. The chosen angle range is divided by the
number of histogram bins into equally sized regions and each pixel calculates
a weighted vote into the corresponding bin. The vote is based on the ori-
entation and magnitude of the edge that is centred on it. The number of
histogram bins must be predetermined. Since more bins do not improve the
descriptor’s performance, Dalal and Triggs [DT05] propose that 9 histogram
bins should suffice. Since gradient magnitudes vary due to local changes of
illumination, the next step is to provide extended invariance to illumination
effects through histogram normalisation. Therefore, cells are combined into
larger spatial regions, so called blocks. Each block calculates a histogram
measure over all cells within the block which is used to normalise all cells
within the corresponding block. Dalal and Triggs [DT05] propose that a cell
should be shared between several blocks. Since cell normalisation depends
on the block’s histogram measure, the normalised cell is different for each
block it appears in. Finally, a dense overlapping grid of blocks is created
and the normalised histograms of all blocks are concatenated to build the
resulting feature vector. The experiments by Dalal [Dal06] show that highly
overlapping grids provide better performance than grids with low overlap.
Figure 5 illustrates the extraction of HOG feature vectors.

Dalal and Triggs [DT05] conclude that good performance can be achieved
by using fine scale derivatives without smoothing with at most 9 orientation
bins and strongly normalised, highly overlapping blocks. The proposed cell
size is 8 × 8 pixels with 2 × 2 cells per block. The block overlap with these
parameters should be one cell in each direction. In their experiments, HOG
features clearly out-perform other feature types like Haar features for person
detection.

2.5 Oriented Histograms of Optical Flow

Dalal et al. [DTS06] introduced the Oriented Histograms of Optical Flow
(HOF) features. These features model object movements and are resistant
against background or camera motion. HOF features can be computed in
almost the same way as the Histograms of Oriented Gradients. The only
difference in computation is that HOF features are calculated over gradients
of the optical flow components instead of the input image gradients. Figure
6 illustrates the feature extraction of both HOG and HOF. As with the
HOG feature, the HOF computation also consists of dividing a window of
interest into small cells, grouping them into blocks, and strong normalisation.
Although the motion cues allow to improve detection performance, building
real time detectors requires fast hardware.

In contrast to gradients of the appearance channel, gradients of the flow
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Figure 6: Comparison of the extraction process of HOG and HOF features.
Illustration taken from [DTS06].

components are more blurred. This is caused by errors in flow estimation,
which lead to imprecise location of the motion edges [Dal06]. Dalal et al. pro-
pose to estimate the optical flow based on the constant brightness assump-
tion. Since optical flow is the distribution of motion velocities of brightness
patterns within an image, this allows to calculate the flow estimates [HS81].
Although the flow estimation proposed by Dalal et al. [DTS06] is less accu-
rate than other methods, their experimental results show that this estimation
provides better performance for HOG features than the implementations of
Galvin et al. [GMN+98].

We will use the following notation throughout this section. Ix, Iy define
images holding the horizontal (x) and vertical (y) flow components. Sub-
scripts denote x- and y-derivations of an image. E.g., Iyx = ∂

∂x
Iy is the

x-derivative of the vertical flow component. [DTS06]
Considering motion information, we can differ between an object’s motion

boundaries and relative motion, e.g. human limbs that move relative to the
torso. Therefore, Dalal et al. define two types of HOF features: Motion
Boundary Histograms and Internal Motion Histograms.

Motion Boundary Histograms (MBH) consider the local edge orientations
of each flow component independently. These are the simplest type of HOF
features. To calculate the feature vector, the first order image gradients of the
flow components are computed. This results in two separate image represen-
tation pairs (Ixx , Ixy ) and (Iyx , Iyy ). Next, each flow component is divided into
small cells. Afterwards, the corresponding gradients vote into local histogram
bins using their magnitude. Analogical to the HOG features, local cells are
grouped into blocks. This results in two separate feature vectors that are
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Figure 7: Comparison of MBH and IMH features. The bottom right cell
illustrates the motion cue encoded by MBH features. IMH features encode
the motion of a cell relative to its neighbors as illustrated by the two adjacent
cells top left. Illustration taken from [Dal06].

based on the information provided by the pairs (Ixx , Ixy ) and (Iyx , Iyy ). Please
note that calculating the HOG representation results in just one feature vec-
tor as only the first order gradients of the input image (Ix, Iy) are required
for angular voting. The two feature vectors provided by the separate flow
components must be combined. This can be done by various means, e.g.
simple concatenation which forms a large feature vector or combination by
applying a winner-takes-all voting, where the largest values out of both com-
ponents build a smaller feature vector. Dalal et al. conclude that treating
the resulting vectors separately achieves the best performance. Thus, con-
catenation of the vectors of both flow components gives the MBH feature
vector. [DTS06]

The silhouette information used by MBH features seems to suffice for
detection of objects without internal motion, e.g. cars. However, detecting
humans imposes a more challenging task due to the possible movement of
limbs. Thus, Dalal et al. [DTS06] introduced Internal Motion Histograms
(IMH). In order to encode additional information about relative motions, the
angular voting is based on the direction of the flow difference vector, instead
of using the spatial derivative displacement as within the MBH features.
Therefore, IMH features use the vector pairs (Ixx , Iyx) and (Ixy , Iyy ) to vote
into the histograms. Dalal et al. propose several types of IMH features.
The simplest feature type is called IMHdiff. This type is calculated in the
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same way as MBH features. The only difference as mentioned above is to
use the pairs (Ixx , Iyx) and (Ixy , Iyy ) for angular voting. Other variations of
IMH features use the blocks-of-cell structure as applied for HOG and MBH
features in a different way. Figure 7 illustrates the difference between MBH
and IMH features. Dalal et al. [DTS06] conclude that IMH features provide
better performance than MBH features for pedestrian detection. However,
we implement MBH features since we want to evaluate the effect of these
features for both pedestrian and car detection.

3 Boosting

There exist several suitable machine learning algorithms for object detection.
Popular classifiers for pedestrian and car detection are for example Support
Vector Machines (SVM) and boosting [WWS09]. Since boosting proved to
achieve good performance in a wide variety of machine learning tasks [GB06],
we use it to build our classifiers.

This section describes the boosting algorithm and its application for fea-
ture selection. First, we review the standard offline boosting algorithm. Sec-
ond, we detail the feature selection process using both offline and online
boosting. Finally, we discuss the challenges for selecting a suitable classifier
for the different feature representations.

3.1 Offline Boosting

Boosting is an efficient method for combining multiple classifiers to form a
classifier that performs better than any of the simple classifiers alone. Since
the simple classifiers only have to perform better than chance in order to
achieve good performance after boosting, they are also called weak classifiers.
Thus, if for a two-class classification problem the error rate of any weak
classifier is less than 50%, boosting can be applied to build a performant
detector. The classifier formed by the boosting algorithm is called a strong
classifier. Boosting can be applied to improve the performance of any learning
algorithm [FS96]. The implementation used in our experiments is based
on the adaptive boosting algorithm (AdaBoost) introduced by Freund and
Schapire [FS96]. This algorithm is one of the most widely used [Bis07].

More formally, the strong classifier H(x) is defined as

H(x) = sign

(
N∑
j=1

αjhj(x)

)
,
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where αj denotes the weight of the corresponding weak classifier hj(x). The
basic steps of the boosting algorithm are as follows. All samples within a
given training set of positive and negative labeled samples are assigned a
weight out of an initially uniform distribution. Thus, a sample xi,

xi ∈ X = {〈x1, y1〉, . . . , 〈xL, yL〉|xi ∈ Rm, yi ∈ {−1,+1}},

is initialised with

p(xi) =
1

L
.

At each boosting iteration, a new weak classifier hj is added to the strong
classifier. Based on its error εj on the training samples, the weak classifier
gets a weight αj, which is defined as

αj =
1

2
ln

1− εj
εj

.

The probability p(xi) for each sample is then increased for misclassified sam-
ples and reduced for correctly classified samples. Thus, the algorithm con-
centrates on hard samples which were still misclassified. These steps are
repeated until a stopping condition is met, e.g. a given number of weak
classifiers has been trained, or the classification error drops below a prede-
termined threshold. Since the training samples must be available at every
stage of the algorithm, it is called offline. [FS96]

3.2 Boosting for Feature Selection

Tieu and Viola [TV00] introduced boosting for feature selection. The basic
concept is that each weak classifier hj corresponds to a single feature fj. The
features are drawn from a pool of possible features F . For computational
efficiency, the algorithm operates on a subset of all possible features.

The feature selection process works analogical to the standard boosting
algorithm. In each iteration j, all features within the pool are evaluated and
the best one is selected to form the weak hypothesis hj. The weight αj is set
accordingly to the error of the hypothesis. Finally, a strong classifier is built
by a weighted linear combination of all weak classifiers. [TV00]

The disadvantage of the method proposed by Tieu and Viola is that all
samples must be available during each step of the boosting algorithm. Thus,
Grabner and Bischof [GB06] introduced an online boosting algorithm for
feature selection, which is able to operate on a single sample which can be
discarded after updating. They introduce the concept of selectors, where each
selector holds a set of M weak classifier. The task of a selector is to choose
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a weak classifier out of its set. Similar to the offline method as proposed by
Tieu and Viola, each weak classifier corresponds to a single feature from a
feature pool. The actual boosting step is performed on the selectors instead
of the weak classifiers. Contrary to the offline selection process, the online
boosting algorithm allows to extract a strong classifier at any time. [GB06]

In our experiments, we combine the two approaches of offline and online
boosting for feature selection. Therefore, the final classifier consists of M
selectors with N features per selector. In each iteration of the offline training,
the N best-performing weak classifiers are selected out of the feature pool.
Additionally, we ensure that the selected features encode different regions of
interest. Otherwise, the selected features might be too similar and additional
information would be lost. After the training, each selector holds N features,
which perform best on the training dataset. However, the best feature of each
selector might not perform best on the test sequence. Thus, the classifier
adapts to the scene using online feature selection. Therefore, the classifier
is updated with hard negative samples out of the scene. During this step,
each selector chooses the best-performing feature out of its N offline selected
features. Afterwards, the final classifier uses those features which perform
best on the scene. [RSGB09]

3.3 Choosing Suitable Weak Classifiers

The performance of boosting algorithms strongly depends on the choice of the
weak classifiers. Although effective weak classifiers increase the performance
of the final strong classifier, not every classifier can be used due to runtime
limitations. For scalar features f ∈ R, such as Haar features, an optimal
decision threshold can be efficiently computed in O(n log n) time, where n
is the number of training samples. However, finding optimal discriminative
thresholds for multi-dimensional feature vectors f ∈ Rm requires O(

(
n
m

)
)

time. Thus, finding optimal decision thresholds of complex classifiers such as
SVMs or Neural Networks can be inefficient due to the large dimensionality
of the feature vectors. [Lap06]

There are several approaches to deal with multi-dimensional feature vec-
tors for boosting. The simplest approach is to use a pre-defined set of
functions gj : Rm → R, which project the feature vectors into a set of
1-dimensional manifolds. Although this approach provides an efficient solu-
tion, the choice of suitable functions gj is crucial. Functions which are not
well suited for the particular problem cause poor generalization of the final
boosted classifier. Hence, Laptev [Lap06] proposes to use Fisher Linear Dis-
criminant as an efficient weak classifier for multi-dimensional vectors. This
method allows optimal classification of normally distributed samples using a
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linear projection based on the class means and covariance matrices. [Lap06]
We concentrate on K-Means and the Nearest Neighbor approach to boost

higher dimensional feature vectors. Additionally, we evaluate an algorithm
which performs class separation by calculating the Euclidean distance of the
feature vector to a randomly generated vector. The basic idea is that feature
vectors of positive samples have a different distance measure to a random
vector than negative samples. We will refer to this algorithm as Distance-
to-Random-Vector. K-Means on the other hand separates training samples
into K different clusters [Bis07]. Each cluster is defined by the mean vector
computed over all samples within the cluster. For classification of a sample,
its Euclidean distance to all mean vectors is computed. The algorithm then
assigns the label of the cluster with the shortest distance. The advantage of
K-Means is that it stores only the mean vectors for further classification. In
contrast, the Nearest Neighbor algorithm stores each training sample [Bis07].
To classify a new sample, its Euclidean distance to every stored sample is
computed. The label of the sample with the shortest distance is assigned
to the sample to be classified. An evaluation of the different weak classifier
types used in our experiments will be discussed in section 4.3.

4 Experiments

We evaluate our classifiers on three pedestrian sequences and two car se-
quences. For the purpose of feature comparison, we focus on typical surveil-
lance scenarios, where a single stationary camera overviews the whole scene.
We compare the feature types using recall, precision and F-measure. Recall
indicates how many of the true positive objects are detected. Precision de-
notes the fraction of correctly classified objects. F-measure is the harmonic
mean of recall and precision. More formally, recall, precision, and F-measure
are defined as

Recall =
#tp

#objects
,

Precision =
#tp

#tp+ #fp
,

F -measure = 2
Recall · Precision
Recall + Precision

,

where #tp denotes the number of correctly detected objects (true positives),
#fp the number of misclassified detections (false positives), and #objects
indicates the number of annotated objects within the scene.
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Figure 8: Samples within the pedestrian dataset. This dataset contains
patches of upright standing or walking humans with varying poses (left), as
well as optical flow patches to train motion-based features (right).

Figure 9: Sample patches within the car dataset. The patches have been
extracted from image frames provided by highway surveillance cameras. The
dataset contains patches showing the rear view of cars on highways (left), as
well as pre-computed optical flow patches (right).

The remainder of this section is organised as follows. First, we briefly
review the training datasets, followed by a discussion of implementation de-
tails. Next, we evaluate different classification algorithms. Afterwards, we
visualise and discuss the evaluated feature representations. Next, we present
the results for pedestrian and car detection. Finally, we analyse the runtime
performance of all evaluated feature types.

4.1 Training Datasets

We use two datasets for training the classifiers throughout our experiments.
The first dataset is used for training pedestrian detectors, while the second
dataset contains samples of cars.

The pedestrian dataset contains 1276 positive and 6946 negative samples
of size 32×64. Additionally, this dataset holds 610 positive and 966 negative
optical flow patches. These patches have been pre-computed in order to
train motion-based features efficiently. Figure 8 shows examples of positive
patches within the pedestrian dataset.

The car dataset consists of 1752 positive and 13188 negative examples of
size 50× 50, as well as 1330 positive and 7946 negative optical flow patches
used to train motion-based features. All patches show the rear view of cars
on highways. Figure 9 shows examples of positive car patches within this
dataset.
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4.2 Implementation Details

The feature selection during classifier training operates on a pool of randomly
generated features. In each iteration of the boosting algorithm, 15, 000 ran-
dom features of the pre-determined types are generated. Out of this feature
pool, each selector chooses the best-performing features. We find that in
practice a pool size of 15, 000 is enough for our classifiers, as the patch size is
only 32× 64 for pedestrian detection, respectively 50× 50 for car detection.

To reduce the chance of overfitting, we bootstrap the trained features in
each offline training iteration. After training all features within the pool using
positive and negative samples, the best-performing features are chosen by the
selectors. Next, these features are evaluated on all negative samples within
the dataset. Misclassified samples are used in the next iteration as hard
samples. Thus, the bootstrapping concentrates on hard negative samples.

In order to adapt the classifiers to the scene, we bootstrap our offline
trained classifiers on frames of the current sequence using online feature se-
lection. Therefore, a classifier is evaluated on scene-specific hard negative
samples. Misclassified samples are used as negative updates to re-train the
classifier in order to learn a scene-specific model.

We increase the detection speed by taking advantage of a priori scene
knowledge, i.e. the ground plane calibration. If no specific scene knowledge
is available, the general approach is to scan each image location at multiple
scales for the objects to classify. However, by knowing the ground plane
calibration, the required patch size at each image location can be predicted.
This allows to build a grid of highly overlapping patches of the correct size.
Since the detector doesn’t have to evaluate each image location at different
scales, this obviously increases its performance. Thus, our detectors use the
scale information of each scene to create a scene-specific patch grid. Figure
10 illustrates the advantage of available scene calibration data. [SRGB09]

In order to find a suitable detector setup, we compare classifiers with 100
to 200 selectors against smaller ones. For this comparison, all classifiers are
trained with Haar features and evaluated on the corridor sequence, which
will be detailed in section 4.5.1. The grid overlap is kept fixed at 92%. It is
noteworthy that all tested classifiers provided similar results. Table 1 lists
some results of the comparison. Training large classifiers requires additional
computational effort. However, since the provided results are almost the
same as for smaller classifiers, we will compare the feature representations
using a classifier consisting of 30 selectors and 20 weak classifiers within each
selector. Additionally, the grid overlap is kept fixed at 92% throughout all
experiments.

For optical flow estimation, we use an implementation based on the
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(a) (b)

Figure 10: Gaining speed-up using scene knowledge. As shown in figure
10(a), a detector without knowledge of the scene calibration has to scan the
image at several scales at every position. If this calibration information is
available, the detector can estimate the correct patch size for each position
in the input frame as shown in figure 10(b). Illustration based on [SRGB09].

anisotropic Huber-L1 optical flow estimation proposed by Werlberger et al.
[WTP+00]. This method uses the robust Huber-L1 norm for regularization
of the flow estimates. The resulting flow gradients are more distinct than
flow estimates computed by isotropic regularization techniques [WTP+00].

The covariance features used throughout the experiments are calculated
over the correlation of pixel locations and first order image gradients. Thus,
the information encoded by these features can be compared to that encoded
by HOG features to some extend. Our implementation of covariance features
does not include the information provided by the different color channels,
since the training datasets only contain grey value images.

4.3 Evaluation of Weak Classifiers

Most of the evaluated feature representation provide multi-dimensional vec-
tor results. In fact, only the value of Haar features is scalar. Since boosting of
multi-dimensional feature vectors is a challenging task, we evaluate different
algorithms to be used as weak classifiers.

In our experiments we compare K-Means, Nearest Neighbor, and the
Distance-to-Random-Vector approach. To guarantee a fair comparison, each
strong classifier contains 30 selectors, with 20 weak classifiers of the cor-
responding type per selector. All classifiers are evaluated on the corridor
sequence, which will be discussed in section 4.5.1. The grid overlap is kept
fixed at 92%. We select covariance features to represent multi-dimensional
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Table 1: Performance of several detectors with different numbers of selectors
and weak classifiers based on Haar features. The abbreviations are as fol-
lows. S stands for the number of selectors of the strong classifier and Hweak

gives the number of weak classifiers per selector. B indicates whether or not
bootstrapping has been applied.

S Hweak B Recall Precision F-measure

30 20 × 88 96 92
30 40 × 85 98 91
40 25 × 85 95 90
100 10 × 90 90 90
150 20 × 80 93 86
150 50 × 78 81 80
200 20 × 77 92 84
20 50 91 43 58
100 50 85 40 54
150 20 89 41 57
200 20 86 42 56

Table 2: Comparison of classification algorithms. For this evaluation, all
classifiers were trained with covariance features.

Weak Classifier Type Recall Precision F-measure

K-Means 77 87 82
Distance to Random Vector 79 82 80
Nearest Neighbor 54 81 65

vectors. Table 2 lists results of the different weak classifiers. K-Means per-
forms slightly better than the other algorithms. Thus, we use K-Means as
weak classifiers throughout the evaluation of the feature representations.

4.4 Feature Visualisation

For a better understanding of the image information encoded by the differ-
ent feature types, we will now discuss the location and form of the best-
performing features of the corresponding types. Haar features encode simple
image structures like edges and bars. This can be seen in Figure 11. For
the task of human detection, both two-rectangle and three-rectangle Haar
features are selected. However, three-rectangle Haar features are not drawn
from the feature pool for car detection. This can be explained by the fact,
that three-rectangle features mostly encode bars, e.g. human limbs. Silhou-
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Figure 11: Visualisation of selected Haar features. The top row shows fea-
tures for pedestrian detection, while features for car detection are depicted
in the bottom row. Three-rectangle Haar features encode line structure like
human limbs. However, this feature type is not drawn from the feature pool
for car detection. Two-rectangle Haar features on the other hand are used
to model edges along the silhouettes of the persons and the contours of the
cars.

ettes on the other hand are better modelled by two-rectangle Haar features.
Figure 12 illustrates the locations of highly discriminative LBP features.

For this visualisation, the best-performing feature of each selector has been
chosen. We calculate the feature value by computing the LBP codes for
each pixel inside the illustrated regions. Afterwards, these codes are used to
vote into the bins of a histogram, which is used as feature response. LBPs
encode texture information. Thus, the features are located near areas with
distinctive textures such as legs. The human’s upper torso also forms a very
distinctive shape. Thus, several LBP features concentrate on blocks that are
located there. A closer look upon the location of the LBP features for car
detection shows that bumpers in combination with the rear wheels, the rear
area containing the back lights, and the rear window provide good features.
These elements are also the most characteristic ones for describing the rear
view of a car.

Locations of covariance features are illustrated in Figure 13. For pedes-
trian classification, these features concentrate on areas containing the upper
torso, shoulders, and head contours. Regions containing the feet don’t seem
to be distinctive enough to be selected as good cues. Covariance features for
car detection mostly encode regions containing the roof.

Figure 14 shows the locations of HOG features that achieved good perfor-
mance for classification. As can be seen, the HOG features encode gradient
information over areas containing strong edges. This feature type clearly
concentrates on characteristical silhouette information for both pedestrian
and car patches.

The location of HOF features is illustrated in Figure 15. The illustrated
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Figure 12: Visualisation of regions of interest for selected LBP features.
The texture measures are spread all over the objects of interest. Highly
discriminative features for pedestrian detection are computed across blocks
that contain the upper torso, the change from body to feet, and contours.
Strong features for car detection contain textures like rear lights, bumpers,
and back windows.

Figure 13: Locations of regions of interest for selected covariance features.
These features seem to concentrate on areas with transitions from background
to the objects of interest.

Figure 14: Visualisation of locations of selected HOG features. These fea-
tures concentrate on areas with highly discriminative edges, such as feet and
contour information of the torso for human detection and distinctive silhou-
ette edge structures for car detection.
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Figure 15: Locations of selected HOF features for pedestrian detection (top
row) and car detection (bottom row). For pedestrian detection, the features
are located on the upper half of the patches, since the motion boundaries at
the bottom are more blurred. For car detection, the features are located at
the right hand side and bottom area where the motion boundaries are less
blurred due to the camera angle.

locations show Motion Boundary Histograms. These features seem to op-
erate well on strong motion boundaries. Thus, areas with blurred motion
edges do not provide good classification cues. If a person is walking, the mo-
tion boundaries within the feet area gets blurred. However, the upper torso
usually remains reasonably steady and thus provides strong edges within the
flow components. Therefore, MBH features at the upper torso of a person
provide stronger cues for pedestrian matching. For the task of car detection,
the MBH features also concentrate on strong motion boundaries. As can be
seen from the illustrated locations of good feature regions, the motion edges
at the bottom and at the right side of the patches provide better information
than the edges at the top. This can be explained by the fact that the cars
move away from the camera and thus, the motion boundaries closer to the
camera provide stronger cues.

4.5 Pedestrian Detection Results

This section presents the results of our classifiers on three pedestrian se-
quences.

4.5.1 Corridor Sequence

The first dataset for evaluation is the corridor sequence as used by Sternig
et al. [SRB10]. This scene shows pedestrians walking across a hallway in
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Figure 16: Sample detections on the corridor sequence.

(a) Without bootstrapping. (b) With bootstrapping.

Figure 17: RPC plot of classifiers on the corridor sequence. Values located
top left are best.

a public building. It contains 901 frames of dimension 480 × 640. Figure
16 shows sample detections of our classifiers. Table 3 lists the results of the
evaluated classifiers. The plot of the Recall-Precision-Curves (RPC) of the
different feature types can be found in Figure 17.

Since optical flow estimation operates on consecutive image frames, we
extracted the optical flow patches contained within the pedestrian training
dataset from this sequence. As the last 300 frames show pedestrians moving
in arbitrary directions, we used this part of the sequence to extract the optical
flow patches. Thus, the classifiers are evaluated on the first 600 frames in
order to guarantee a fair comparison.

Haar features clearly outperform all other feature types on this sequence.
Bootstrapping provides good improvement for Haar and HOG features, while
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Table 3: Results on the corridor sequence. B indicates whether or not the
classifier has been adapted to the scene using bootstrapping.

Feature Types B Recall Precision F-measure

Haar × 85 97 90
HOG + HOF × 82 89 86
Haar + HOF 63 95 76

HOG × 65 93 76
Covariance + HOF 59 95 73

Covariance 60 89 72
HOG 52 89 66

LBP + HOF 50 83 62
Haar 94 45 61

Haar + HOF × 70 50 58
LBP + HOF × 48 66 56

LBP 52 60 56
All Features 90 35 51

HOG + HOF 94 34 50
LBP × 21 76 32
HOF 62 17 27

All Features × 27 19 23
Covariance × 24 21 22

Covariance + HOF × 6 96 12

covariance and LBP features perform better without bootstrapping. Since
the corridor sequence is similar to the training samples, LBP features cannot
be improved by additional bootstrapping. The results verify that motion
features alone cannot be used to build a classifier which performs reasonably
well. However, combining other feature types with HOF representations al-
lows to build detectors with good performance. The combination of HOG
and HOF features provides better improvement than combining HOF fea-
tures with other feature types on this sequence.

We train a detector based on all feature types in order to analyse which
features are selected after the training and bootstrapping process. Therefore,
we create a feature pool of 50, 000 randomly generated features, where all
feature types are uniformly distributed. After offline training, we analyse
the distribution of all feature types within the classifier, as well as the 30
selected features, which are used for detection. Thus, we can identify the
best-performing feature types on the training dataset. Afterwards, we boot-
strap the classifier with hard negative samples from the scene and evaluate
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Figure 18: Feature distribution of pedestrian detectors. The first bar shows
the percentage of features within the classifier. The second bar shows the
percentage of feature types among the 30 best-performing features after the
offline training. The remaining bars indicate the percentage among the 30
best-performing features after bootstrapping on the corresponding pedestrian
sequence.

the distribution of the selected feature types again. This allows to deter-
mine whether the selected features also perform best on the scene. Figure
18 shows the distribution of the feature types. As can be seen, LBP, HOG,
and covariance features perform best throughout the training. In contrast,
features with good performance on the scene, i.e. Haar, are not present in
the trained classifier, as these perform worse on the training dataset. Hence,
the bootstrapped classifier consists mostly of covariance and LBP features,
which are obviously not the best features for the corridor sequence.

4.5.2 PETS 2006

We use an image sequence from the publicly available PETS 2006 dataset1

as standard benchmark. The dataset contains 308 frames of dimension 720×
576. The scene shows people moving across the platform of a railway station.
Figure 19 shows sample detections of the tested classifiers. Table 4 lists the
classification results. RPC plots are shown in Figure 20.

As can be seen from the results, this scene is more complex than the
corridor sequence. There are many additional structures in the background
such as patterns on the floor, seats, and bars at the barrier which separates
the platform from the trains. Additionally, seats and crowds cause occlu-

1http://www.pets2006.net, June 1, 2010.
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Figure 19: Sample detections on the PETS 2006 sequence. The camera
overviews a platform of a railway station.

(a) Without bootstrapping. (b) With bootstrapping.

Figure 20: RPCs of classifiers on the PETS 2006 dataset.
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sions, which impose additional challenges. Haar and HOG features again
perform best on this scene. Covariance and LBP features cannot achieve
good performance. Motion cues in combination with other features achieve
less improvement than on the corridor sequence. This can be explained by
the fact that the persons move in different directions, which were not covered
completely by the flow patches within the training dataset. Bootstrapping
does not seem to improve the detection performance on this sequence. In-
stead, the confidence drops and thus the detectors achieve less recall, which
leads to lower performance than without bootstrapping.

The feature distribution of the classifier trained on all feature types is
illustrated in Figure 18. Since the selected features after training also out-
perform the other features available within the classifier, the distribution of
the feature types does not change significantly after bootstrapping. The de-
tector performs similar to the detector trained with covariance features only.
This can be explained by the high percentage of selected covariance features.

Table 4: Results on the PETS 2006 sequence.
Feature Types B Recall Precision F-measure

Haar 63 98 77
Haar + HOF 55 98 71

Haar × 50 98 67
HOG 53 91 67

HOG + HOF 78 52 63
Covariance 68 56 62

Haar + HOF × 52 71 60
Covariance + HOF 57 61 59

All Features × 73 50 59
All Features 67 50 57

HOG + HOF × 50 65 56
HOG × 74 40 52
LBP × 32 94 48

LBP + HOF 86 28 42
LBP + HOF × 29 65 40

LBP 83 25 38
HOF 69 22 33

Covariance × 13 31 19
Covariance + HOF × 11 17 13
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Figure 21: Sample detections on the CAVIAR sequence. The pedestrians
within the region above the white line are smaller than the trained patches.
Thus, this region has not been used for evaluation.

(a) Without bootstrapping. (b) With bootstrapping.

Figure 22: RPC plot of classifiers on the CAVIAR sequence.

4.5.3 CAVIAR

We use a sequence from the publicly available CAVIAR dataset2 as an ad-
ditional standard benchmark. The scene shows the hallway of a shopping
centre in Lisbon. The image sequence contains 370 frames of dimension
384× 288. Figure 21 shows sample detections of our classifiers. The results
are summarized in Table 5. Figure 22 shows the RPCs of the evaluated
classifiers.

On this dataset, HOG features outperform the other feature types, fol-
lowed by Haar features. The major challenges of this sequence are the varying
scale and the camera angle. On the one hand, pedestrians at the far end of

2http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1, June 1, 2010.
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Table 5: Results on the CAVIAR sequence.
Feature Types B Recall Precision F-measure

HOG + HOF × 77 89 83
Haar + HOF 75 90 82
Haar + HOF × 66 89 76

Haar × 58 94 71
HOG × 65 78 71

All Features 66 71 68
LBP + HOF × 54 81 65

HOG 56 72 63
Covariance + HOF 49 83 62

Haar 81 50 62
LBP × 49 77 60

LBP + HOF 69 43 53
LBP 40 71 51

HOG + HOF 85 36 51
Covariance 75 34 51

HOF 63 28 39
Covariance × 5 37 9

Covariance + HOF × 1 100 2
All Features × 8 97 15

the hallway are very small and show almost no distinctive structures. On the
other hand, the camera angle in combination with the frequency of pedes-
trians causes people in the foreground to occlude people in the background.
If the overlap is too large, the detectors cannot distinguish between all indi-
viduals and thus, some detections are missed. Similar to the other evaluated
pedestrian sequences, covariance and LBP features achieve a lower perfor-
mance than Haar and HOG features. Bootstrapping allows to improve the
performance of HOG, LBP, and Haar features. However, the performance of
covariance features drops dramatically after scene-specific negative updates.
The combination of motion-based and appearance-based features achieves
the best results for HOG and HOF features. It is noteworthy that the op-
tical flow estimates are less accurate than on the other sequences, since the
dataset contains only every tenth frame of the surveillance camera. However,
this does not cause a lower performance of the motion-based features. This
can be explained by the fact that HOF features do not require precise optical
flow estimates, as shown by Dalal et al. [DTS06]. Also, the movement of
pedestrians within the CAVIAR sequence resembles the motion of pedestri-
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Figure 23: Sample detections on the first highway sequence. Since we trained
our detectors with patches showing the rear end of cars, we evaluate our
classifiers only on the right lane. The white box shows the boundaries of the
detection region.

ans within the corridor sequence, from which the training patches for the
motion-based features have been extracted.

4.6 Car Detection Results

This section presents the results of our classifiers on two highway sequences.

4.6.1 Highway 1

The first image sequence for evaluation of car classifiers consists of 2, 000
frames of dimension 704 × 576. This scene has been taken from a highway
surveillance camera. Rapidly changing illumination and shadowing effects
make up the challenge of this scene. Figure 23 shows sample detections,
whereas Table 6 lists the results of the evaluated classifiers. Figure 24 shows
the RPCs of the different feature types on this sequence.

The optical flow patches contained in the dataset of car samples have
been extracted from the first 450 frames of this sequence. Thus, evaluation
starts at frame 450 to guarantee a fair comparison. The results show that car
detection is an easier task than pedestrian detection. This can be explained
by several facts. First, there is almost no variation of the shape of cars. Given
a type of cars, e.g. passenger cars or estate cars, all objects of this type have
the same characteristic shape. Second, the cars within a highway surveillance
sequence are moving in the same direction. Thus, there is only monotonic
motion, whereas pedestrians can move arbitrarily across the scene.
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(a) Without bootstrapping. (b) With bootstrapping.

Figure 24: RPC plot of classifiers on the first highway sequence.

Table 6: Results on the first highway sequence.
Feature Types B Recall Precision F-measure

Covariance + HOF 89 96 92
HOG × 85 95 90

Covariance 89 91 90
All Features 81 98 89

HOG + HOF × 92 87 89
Haar × 83 94 88

HOG + HOF 86 87 86
Haar 79 89 84
HOG 74 92 82

Covariance × 74 88 80
Haar + HOF × 86 74 80

LBP 80 57 67
LBP + HOF 82 55 66
LBP + HOF × 51 69 58

LBP × 55 57 56
HOF 74 44 55

Haar + HOF 97 35 52
All Features × 30 98 46

Covariance + HOF × 7 100 13
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Almost all feature types achieve good performance on this sequence. Even
illumination changes and moving shadows do not reduce the accuracy of the
detectors. However, LBP features perform worst compared to the other fea-
ture representations. A possible explanation is that in general, the texture
of cars is weaker than the texture of other object classes such as pedestrians.
Bootstrapping can be applied to improve the performance of Haar and HOG
features. However, as it is also the case at pedestrian detection, bootstrap-
ping of LBP and covariance features leads to lower performance. It is also
noteworthy that HOF features perform much better on car detection com-
pared to pedestrian detection. This is mainly caused by the fact that the
cars move in the same direction with almost constant speed. However, the
results verify that only motion-based features are not enough to build a well
performing car detector.

Figure 25 illustrates the distribution of feature types within a detector
trained on all feature types. Since MBH motion features perform better
on car detection tasks [DTS06], these features are also among the best-
performing features after training and bootstrapping. Similar to the pedes-
trian detector with all feature types, Haar features are not selected due to
the larger error on the training set. Nevertheless, contrary to the pedestrian
detector trained on all feature types, the car detector achieves a better per-
formance, since covariance and LBP features, as can be seen from the results,
perform better on car sequences than on pedestrian scenes.

4.6.2 Highway 2

The second highway surveillance scenario contains 1, 000 frames of dimension
380 × 324. Sample detections are illustrated in Figure 26. Table 7 lists the
detection results. Figure 27 shows the RPCs of the different feature types.

The classifiers were trained on patches showing the rear view of cars.
Thus, the slightly different camera angle causes additional challenges. How-
ever, HOG and Haar features perform reasonably well. On this scene, Haar
features in combination with motion-based features perform best. Boot-
strapping works best for the combination of Haar and HOF features and
Haar features alone. Contrary to the first highway sequence, bootstrapping
improves the performance of LBP features. However, the overall performance
of LBP features is still not enough to build a robust car detector.

The feature distribution of the detector trained on all feature types is
illustrated in Figure 25. As can be seen, bootstrapping has only little effect
on the selection of the best-performing feature types. The bootstrapped
detector still holds a large number of LBP features, which is also a reason
for the lower performance of the detector on this dataset.
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Figure 25: Feature distribution of car detectors. The first bar shows the
percentage of features within the classifier. The second bar shows the per-
centage of feature types among the 30 best-performing features after the
offline training. The remaining bars indicate the percentage among the 30
best-performing features after bootstrapping on the corresponding car se-
quence.

Figure 26: Sample detections on the second highway sequence. The white
box shows the boundaries of the detection region.
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(a) Without bootstrapping. (b) With bootstrapping.

Figure 27: RPC plot showing the different classifiers on the second highway
sequence.

Table 7: Results on the second highway sequence.
Feature Types B Recall Precision F-measure

Haar + HOF × 98 85 91
HOG 94 86 90

Covariance × 88 74 80
Covariance 88 74 80

Haar × 95 67 79
Covariance + HOF × 60 97 74
Covariance + HOF 60 97 74

HOG × 90 59 71
HOG + HOF × 98 52 68

LBP × 49 91 64
LBP + HOF × 46 93 61

Haar 45 77 57
All Features × 87 42 57
All Features 87 42 57
Haar + HOF 41 91 56
LBP + HOF 43 76 55

LBP 37 86 51
HOF 30 41 35

HOG + HOF 97 18 30
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Table 8: Frame rates achieved with the different feature types on the eval-
uated sequences. The runtime measure is frames per second (fps). The
abbreviation HW stands for “highway”.

Feature Type Corridor PETS 2006 CAVIAR HW 1 HW 2

Haar 7.27 5.17 19.28 5.45 18.84
LBP 2.59 1.75 4.54 1.32 4.33
Covariance 1.00 0.71 1.87 0.92 2.87
HOG 2.70 1.95 6.19 2.56 8.51
Haar + HOF 2.14 1.70 5.97 1.28 4.13
LBP + HOF 1.34 1.01 2.94 0.90 2.98
Covariance + HOF 0.81 0.60 1.83 0.56 1.77
HOG + HOF 1.71 1.22 4.07 1.07 3.31

Number of patches 756 1,110 525 2,276 703

4.7 Runtime Evaluation

To compare the feature representations in terms of runtime efficiency, we
calculate frame rates of each feature type on the evaluation datasets. Since
the complexity of the feature type, as well as the dimensions of the input
images and the chosen grid overlay cause the frame rates to vary, we com-
pare the frame rates on each image sequence. The tests were run on an
Intel R©CoreTM2 Duo T9550 CPU at 2.66 GHz with 2 GB RAM. Since the
setup does not contain a GPU, we pre-compute the optical flow estimates
in order to achieve competitive frame rates for motion-based features. To
guarantee a fair comparison, we train a classifier with 30 selectors and 20
features of a specific type per selector. The grid overlap is kept fixed at 80%.
The achieved frame rates on the pedestrian and car sequences are listed in
Table 8 and illustrated in Figure 28.

Haar features are obviously the most efficient feature types. More com-
plex features, which operate on histograms such as HOGs and LBPs, require
much more computational effort. Thus, the frame rates of detectors using
these features is significantly lower. The results show that the computation
of covariance features is the most time-consuming due to the complex han-
dling of covariance matrices and the approximation on Euclidean space. It is
noteworthy, that the additional computational effort for combining motion-
based features with complex feature types is quite low, i.e. there is only a
small decrease of the frame rate. Higher frame rates can be achieved when
using the combination of motion-based and appearance-based features on
fast hardware.
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(a) Frame rates on pedestrian sequences.

(b) Frame rates on car sequences. (c) Color key.

Figure 28: Frame rates.

5 Conclusion

In this thesis we evaluated common feature representations for pedestrian
and car detection, i.e. Haar, LBP, covariance, and HOG features. We also
combined these appearance-based features with motion-based HOF features
to analyse the effect of additional motion cues. For pedestrian detection,
the features were evaluated on a corridor sequence, a standard PETS 2006
sequence and a sequence of the CAVIAR dataset. Car detection results were
compared on two highway surveillance scenarios.

We used boosting to build the detectors for comparison. In order to
select the best-performing features, we applied boosting for feature selec-
tion [GB06]. Since all feature types except for Haar features provide multi-
dimensional feature responses, we evaluated various algorithms as weak clas-
sifiers. In our experiments, K-Means performs slightly better than the Near-
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est Neighbor and Distance-to-Random-Vector approach. In order to deter-
mine a suitable classifier size, we compared small, moderately sized, and large
detectors. Since large detectors with 100 to 200 selectors achieve almost the
same performance as the smaller detectors with only 20 to 50 selectors. Thus,
the experimental results do not encourage the use of very large classifiers since
they require additional computational effort during training and take much
more time to evaluate on the datasets. The best-performing classifier in our
experiments uses 30 selectors with 20 weak classifiers per selector.

Our results show that Haar and HOG features outperform LBP and co-
variance features for both pedestrian and car detection. Haar features achieve
the best performance on most pedestrian sequences, while HOG features per-
form best on car sequences. Covariance features computed over location and
first order image gradients do not perform well on pedestrian sequences,
while these features achieve considerably good performance on car sequences
similar to HOGs. LBP features seem to generalize worse than the other
feature types, although the error of LBP features on the training set is con-
siderably low. Bootstrapping with hard negative samples taken from a scene
can obviously improve the performance of Haar and HOG features. However,
bootstrapping detectors which already achieve a very good performance does
not improve the results further. LBP and covariance features on the other
hand seem to perform best without being bootstrapped on the scene.

We evaluated Motion Boundary Histograms, which are a subtype of the
motion-based HOF features. The experimental results show that motion-
based features alone cannot achieve a good detection performance. However,
the combination of motion-based and appearance-based features can improve
the overall performance. Detectors based on such a combination perform ob-
viously best on sequences where the motion of the objects resembles the
motion of the trained patches to a large extent. Since our dataset contains
only a limited number of different motion directions, motion-based features
achieve a lower performance on more complex sequences, where the objects
may move arbitrarily across the scene. Although Motion Boundary His-
tograms are suited better for car detection [DTS06], the results on pedestrian
sequences are notably well. The results so far encourage further progress at
combining appearance-based features with additional motion cues in order
to build robust object detectors.
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Texture-Based Method for Detecting Moving Objects. In British
Machine Vision Conference, 2004. 5

[HS81] Berthold K.P. Horn and Brian G. Schunck. Determining Optical
Flow. Artificial Intelligence, 1981. 10

39



[KMB09] Stefan Kluckner, Thomas Mauthner, and Horst Bischof. A Co-
variance Approximation on Euclidean Space for Visual Tracking.
In Workshop of the Austrian Association for Pattern Recognition,
2009. 6, 7

[Lap06] Ivan Laptev. Improvements of Object Detection Using Boosted
Histograms. In British Machine Vision Conference, 2006. 14, 15

[LM02] Rainer Lienhart and Jochen Maydt. An Extended Set of Haar-
Like Features for Rapid Object Detection. In International Con-
ference on Image Processing, 2002. 2, 3, 4

[OPH96] Timo Ojala, Matti Pietikäinen, and David Harwood. A Com-
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