
Supplement for BIER

1. Introduction
In this document we provide further insights into Boost-

ing Independent Embeddings Robustly (BIER). First, in
Section 2 we describe our method for loss functions op-
erating on triplets. Next, in Section 3 we show how our
method behaves when we vary the embedding size and the
number of groups. In Section 4 we summarize the effect of
our boosting based training approach and our initialization
approach. We provide an experiment evaluating the impact
of end-to-end training in Section 5. Further, in Section 6 we
demonstrate that our method is applicable to generic im-
age classification problems. Finally, we show a qualitative
comparison of the different embeddings in our ensemble in
Section 7 and some qualitative results in Section 8.

2. BIER for Triplets
For loss functions operating on triplets of samples, we

illustrate our training method in Algorithm 1. In contrast
to our tuple based algorithm, we sample triplets x(1), x(2)

and x(3) which satisfy the constraint that the first pair (x(1),
x(2)) is a positive pair (i.e. y(1),(2) = 1) and the second pair
(x(1), x(3)) is a negative pair (i.e. y(1),(3) = 0). We accu-
mulate the positive and negative similarity scores separately
in the forward pass. In the backward pass we reweight the
training set for each learnerm according to the negative gra-
dient `′ at the ensemble predictions of both image pairs up
to stage m− 1.

3. Evaluation of Embedding and Group Sizes
To analyse the performance of BIER with different em-

bedding and group sizes we run an experiment on the CUB-
200-2011 dataset [9]. We train a model with an embedding
size of 512 and 1024 and vary the number of groups (i.e.
learners) in the ensemble. The group sizes of the individual
models are shown in Table 1. We report the R@1 scores of
the different models in Figure 1. The performance of our
method gracefully degrades when the number of groups is
too small or too large. Further, for larger embedding sizes
a larger number of groups is beneficial. This is due to the
tendency of larger embeddings to overfit. To address this
problem, we train several embeddings which are smaller
and therefore, less prone to overfitting.

Let ηm = 2
m+1 , for m = 1, 2, . . . ,M ,

M = number of learners, I = number of iterations
for n = 1 to I do

/* Forward pass */

Sample triplet (x(1)
n , x(2)

n , x(3)
n ),

s.t. y(1),(2) = 1 and y(1),(3) = 0.
s0

+

n := 0

s0
−

n := 0
for m = 1 to M do
sm

+

n := (1−ηm)sm−1
+

n +ηms(fm(x
(1)
n ), fm(x

(2)
n ))

sm
−

n := (1−ηm)sm−1
−

n +ηms(fm(x
(1)
n ), fm(x

(3)
n ))

end
Predict s+n = sM

+

n

Predict s−n = sM
−

n

/* Backward pass */
wn := 1
for m = 1 to M do

s
(1),(2)
m := s(fm(x

(1)
n ), fm(x

(2)
n )

s
(1),(3)
m := s(fm(x

(1)
n ), fm(x

(3)
n )

Backprop wn`(s
(1),(2)
m , s

(1),(3)
m )

wn := −`′(sm+

n , sm
−

n )
end

end
Algorithm 1: Online gradient boosting algorithm for our
CNN using triplet based loss functions.

Embedding Group Size Groups
512 2 170-342
512 3 96-160-256
512 4 52-102-152-204
512 5 34-68-102-138-170
1024 3 170-342-512
1024 4 102-204-308-410
1024 5 68-136-204-274-342
1024 6 50-96-148-196-242-292
1024 7 36-74-110-148-182-218-256

Table 1. Group sizes used in our experiments.

1



2 3 4 5 6 7

Number of Groups

54.6

54.8

55.0

55.2

55.4

55.6

55.8

56.0

56.2

R
@

1
Evaluation of Embedding Size and Group Size

512
1024

Figure 1. Evaluation of an embedding size of 512 and 1024 with
different numbers of groups.

4. Impact of Matrix Initialization and Boosting
We summarize the impact of matrix initialization and

the proposed boosting method on the CUB-200-2011
dataset [9] in Table 2. Both our initialization method and
our boosting based training method improve the final R@1
score of the model.

Method R@1
Baseline 51.76
Our initialization 53.73
Boosting with random initialization 54.41
Boosting with our initialization 55.33

Table 2. Summary of the impact of our initialization method and
boosting on the CUB-200-2011 dataset.

5. Evaluation of End-to-End Training
To show the benefits of end-to-end training with our

method we apply our online boosting approach to a fine-
tuned network and fix all hidden layers in the network
(denoted as Stagewise training). We compare the results
against end-to-end training and summarize the results in
Table 3. End-to-end training significantly improves final
R@1 score, since weights of lower layers benefit from the
increased diversity of the ensemble.

Method R@1
Stagewise training 52.0
End-to-End training 55.3

Table 3. Influence of end-to-end training on the CUB-200-2011
dataset.

6. General Applicability
Ideally, our idea of boosting several independent classi-

fiers with a shared feature representation should be appli-
cable beyond the task of metric learning. To analyse the
generalization capabilities of our method on regular image

classification tasks, we run an experiment on the CIFAR-
10 [4] dataset. CIFAR-10 consists of 60, 000 color images
grouped into 10 categories. Images are of size 32×32 pixel.
The dataset is divided into 10, 000 test images and 50, 000
training images. In our experiments we split the training
set into 10, 000 validation images and 40, 000 training im-
ages. We select the number of groups for BIER based on
the performance on the validation set.

The main objective of this experiment is not to show that
we can achieve state-of-the-art accuracy on CIFAR-10 [4],
but rather to demonstrate that it is generally possible to im-
prove a CNN with our method. To this end, we run experi-
ments on the CIFAR-10-Quick [2] and an enlarged version
of the CIFAR-10-Quick architecture [1] (see Table 4). In the
enlarged version, denoted as CIFAR-10-Quick-Wider, the
number of convolution channels and the number of neurons
in the fully connected layer is doubled. Further, an addi-
tional fully connected layer is inserted into the network. In
both architectures, each convolution layer is followed by
Rectified Linear Unit (ReLU) nonlinearity and a pooling
layer of size 3 × 3 with stride 2. The last fully connected
layer in both architectures has no nonlinearity.

To apply our method, we divide the last fully connected
layer into 2 and 4 non-overlapping groups for the CIFAR-
10-Quick and CIFAR-10-Quick-Wider architecture, respec-
tively, and append a classifier to each group (see Table 4).
As loss function we use crossentropy. Further, instead of
pre-initializing the weights with our optimization method,
we directly apply the optimization objective from Equa-
tion (3) in the main manuscript to the last hidden layer of the
network during training time. This encourages the groups
to be independent of each other. The main reason for adding
the loss function during training time is that weights change
too drastically in networks trained from scratch compared to
fine-tuning a network from a pre-trained ImageNet model.
Hence, for this type of problems it is more effective to addi-
tionally encourage diversity of the learners with a separate
loss function.

We compare our method to dropout [8] applied to the last
hidden layer of the network. As we see in Tables 5 and 6,
BIER improves on the CIFAR-10-Quick architecture over a
baseline with just weight decay by 2.68% and over dropout
by 0.78%. On the larger network which is more prone to
overfitting, BIER improves over the baseline by 2.42% and
over dropout by 1.41%.

These preliminary results indicate that BIER generalizes
well for other tasks beyond metric learning. Thus, we will
further investigate the benefits of BIER for other computer
vision tasks in our future work.

7. Qualitative Comparison of Embeddings
To illustrate the differences between the learned embed-

dings we show several qualitative examples in Figure 2.



CIFAR-10-Quick CIFAR-10-Quick-Wider
conv 5× 5× 32 conv 5× 5× 64
max-pool 3× 3/2 max-pool 3× 3/2
conv 5× 5× 32 conv 5× 5× 64
avg-pool 3× 3/2 avg-pool 3× 3/2
conv 5× 5× 64 conv 5× 5× 128
avg-pool 3× 3/2 avg-pool 3× 3/2
fc 64 fc 128
clf 10× 2 fc 128

clf 10× 4

Table 4. We use the CIFAR-10-Quick [2] and an enlarged version
of CIFAR-10-Quick [1] architecture.

Method Accuracy
Baseline 78.72
Dropout 80.62
BIER 81.40

Table 5. Results on CIFAR-10 [4] with the CIFAR-10-Quick ar-
chitecture.

Method Accuracy
Baseline 80.67
Dropout 81.69
BIER 83.10

Table 6. Results on CIFAR-10 [4] with the CIFAR-10-Quick-
Wider architecture.

Successive learners typically perform better at harder ex-
amples compared to previous learners, which have a smaller
embedding size.

8. Qualitative Results

To illustrate the effectiveness of BIER we show some
qualitative examples in Figures 3, 4, 5, 6 and 7.

References
[1] M. Cogswell, F. Ahmed, R. Girshick, L. Zitnick, and D. Ba-

tra. Reducing Overfitting in Deep Networks by Decorrelating
Representations. In Proc. ICLR, 2016. 2, 3

[2] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Con-
volutional Architecture for Fast Feature Embedding. arXiv,
abs/1408.5093, 2014. 2, 3

[3] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3D Object Rep-
resentations for Fine-Grained Categorization. In Proc. ICCV
Workshops, 2013. 5

[4] A. Krizhevsky. Learning Multiple Layers of Features from
Tiny Images. Technical report, University of Toronto, 2009.
2, 3

[5] H. Liu, Y. Tian, Y. Wang, L. Pang, and T. Huang. Deep Rel-
ative Distance Learning: Tell the Difference Between Similar
Vehicles. In Proc. CVPR, 2016. 7

[6] Z. Liu, P. Luo, S. Qiu, X. Wang, and X. Tang. DeepFashion:
Powering Robust Clothes Recognition and Retrieval with Rich
Annotations. In Proc. CVPR, 2016. 6

[7] H. Oh Song, Y. Xiang, S. Jegelka, and S. Savarese. Deep
Metric Learning via Lifted Structured Feature Embedding. In
Proc. CVPR, 2016. 6

[8] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A Simple Way to Prevent Neural
Networks from Overfitting. JMLR, 15:1929–1958, 2014. 2

[9] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The Caltech-UCSD Birds-200-2011 Dataset. Technical Re-
port CNS-TR-2011-001, California Institute of Technology,
2011. 1, 2, 4, 5



Query Learner-1 Learner-2 Learner-3

Figure 2. Qualitative results on the CUB-200-2011 [9] dataset of the different learners in our ensemble. We retrieve the most similar image
to the query image for learner 1, 2 and 3, respectively. Correct results are highlighted green and incorrect results are highlighted red.



Query 1 2 3 4 5

Figure 3. Qualitative results on the CUB-200-2011 [9] dataset. We retrieve the 5 most similar images to the query image. Correct results
are highlighted green and incorrect results are highlighted red.

Query 1 2 3 4 5

Figure 4. Qualitative results on the Cars-196 [3] dataset. We retrieve the 5 most similar images to the query image. Correct results are
highlighted green and incorrect results are highlighted red.



Query 1 2 3 4 5

Figure 5. Qualitative results on the Stanford Online Products [7] dataset. We retrieve the 5 most similar images to the query image. Correct
results are highlighted green and incorrect results are highlighted red.

Query 1 2 3 4 5

Figure 6. Qualitative results on the In-Shop Clothes Retrieval [6] dataset. We retrieve the 5 most similar images to the query image. Correct
results are highlighted green and incorrect results are highlighted red.



Query 1 2 3 4 5

Figure 7. Qualitative results on the VehicleID [5] dataset. We retrieve the 5 most similar images to the query image. Correct results are
highlighted green and incorrect results are highlighted red.


