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1. Supplementary
In the following, we summarize the additional explana-

tions, evaluations and visualizations. We start with a de-
scription of evaluation metrics applied within our paper in
Section 1.1. Next we summarize our experimental results
on the Weizmann [2] data set, comparing with results re-
cently proposed by [8]. Finally, we discuss in detail the
additional experiment for cropping centered objects in the
ASD dataset [1], and give visual examples and comparisons
with competing approaches.

1.1. Evaluation Metrics

Within our experimental section several metrics are ap-
plied to evaluate saliency detection methods against each
other. As ground truth annotations are given in different
formats (i.e. coarse bounding boxes, detailed binary seg-
mentation or eye-fixation maps), we apply the following
metrics correspondingly. If ground truth segmentation is
available, we compute precision/recall values as well as the
area under curve (AUC) by varying thresholds to obtain
binarized saliency maps and measure the overlap with the
ground truth segmentation. For experiments where solely
bounding box annotations are available, we add spanning
bounding boxes to the binarized saliency map before com-
puting the scores (denoted AUC-box, see Figure 1). For
given eye-gaze ground truth data, we measure the exactness
of the saliency maps by computing the normalized cross
correlation (NCC).

AUC: For evaluation on segmented object ground truth,
we compute true-positives (TP), false-positives (FP), true-
negatives (TN) and false-negatives (FN) for each threshold
image (see Figure 1, second row). The TP is the number
of pixels with saliency values ≥ threshold and overlapping
with the ground truth. In contrast, FN are all pixels within
the ground truth region < threshold. By varying this thresh-
old one can compute recall-precision curves by

precision =
TP

TP + FP
(1)

and

recall =
TP

TP + FN
. (2)

The area under this recall precision curve is denoted as
AUC. Although the saliency maps of different algorithms
align nicely with the object region, the bounding box anno-
tation causes many false-negatives, as depicted in Figure 1.

AUC-Box: Filling the binary saliency maps with span-
ning bounding boxes before computing TP, FP, TN and FN
compensates for coarse annotation (see Figure 1). We de-
note this measure AUC-box within the paper. Given both
scores for the UCF sports dataset, the reader may extract
additional information about performance and robustness of
methods.

NCC: If non-binary ground truth information is given,
e.g. as eye-gaze tracking data, we apply normalized cross
correlation for measuring performance. Eye-gaze data is
generally given as a set of sparse local points of fixations
or saccadic motions. As defined by the collectors of the
data [4], we apply Gaussian blur for each gaze measurement
to compensate measurement errors and create a smooth
map.

1.2. Saliency for Activity Detection

We follow the recent evaluation of image and video
saliency methods by Zhou et al. [8] on the Weizmann
activity dataset [2] and compare our proposed encoding
based saliency (EBS) method to the top-performing meth-
ods [3, 5, 8] of that study. The dataset contains videos
of ten activities performed by nine actors captured with
object-centered static cameras in front of a homogenous
background. This simplifies the video saliency estimation
to a foreground estimation problem. In fact, results in [8]
have shown the superior performance of solely color-based
methods, while video saliency approaches (which include
motion information) perform worse. Figure 2 shows this
bias of the evaluation strategy. Although our weighted
saliency approach (EBSG) yields visually plausible results,



Figure 1: Comparison of AUC and AUC-box computation. Left column shows the ground truth bounding box annotation.
Top row depicts results from individual saliency detection methods (f.l.t.r) our proposed EBSG, [6] and [5]. Second row
shows true-positives for different thresholds. Especially non-segmentation results like column two and three have many
false-negatives, hence low recall and AUC values. Applying spanning bounding-boxes around sub-segments compensates
for the coarse segmentation, allowing for a fairer comparison (third row).

the segmentation ground truth prefers fully segmented ob-
jects. In particular, considering purely local activity (e.g.
hand waving) the motion-based saliency focuses on such
active regions, which results in reduced performance met-
rics on the binary ground truth masks as these cover the
whole person. However, our solely color-based approach
EBS(color) shows competitive results in comparison to the
top-performing methods.

1.3. Salient Object Detection In Images

Figure 3 summarizes the results for different parameter
combinations between color-space, bins per channel, num-
ber of encoding vectors and number of nearest neighbor en-
coding vectors applied for computing the saliency values of
pixels. Although this evaluation creates over 50 different
combinations, all results are within state-of-the-art which
underlines the robustness of our proposed method. As dis-
cussed within our paper, salient object datasets are biased
towards centered objects without connection to the image
border. All methods performing favorable compared to our
proposed EBS methods, exploit this circumstance. To eval-
uate robustness of methods if this assumption is violated,
and to compare our EBSG against top performing BMS [7],
we created two datasets by cropping images of the ASD
dataset such that salient objects are located near the borders.
Two cropping levels are tested: First, salient objects touch
the closest image border and second, intersect the closest
border by 5 pixels. Directly visible in Figure 4, and de-
picted in Figure 4c of our main paper, the robustness of

BMS decreases drastically while EBSG stays almost con-
stant within the first test and decreases slightly for severe
out of center objects. Additional visual comparisons can be
found in Figures 5 and 6.
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Figure 3: Results for different parameter configurations on
the ASD data set.
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Figure 2: Weizmann video saliency. Top row (a): image, motion, and ground truth segmentation. Bottom row: saliency
results for taking color, motion or combining both cues by our proposed weighting scheme. Average recall precision curves
are shown in (b). Our EBS method taking solely color information performs favorably. See text for further discussion.

Figure 4: Visual comparison of EBS and BMS [7] for detecting salient objects which intersect with image border. Top row
shows (f.l.t.r) original input image, ground truth, results for BMS and EBSG. Right-most column shows EBSGR results using
encoding information for over-segmentation and propagating high saliency values within these segments. Bottom row shows
cropped image with object attached to border. Still the object defines the visual salient part of the image, but performance
of BMS strongly decreases while EBSG performs well. As we fill regions after computing the saliency with EBSGR, our
segmentation results contains details of the object.
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Figure 5: Visual comparison of EBS with BMS [7] on cropped images of complex textured examples (f.l.t.r): Input image,
ground truth, BMS, EBSG. Final column shows EBSGR using encoding information for over-segmentation and propagating
high saliency values within these segments.



Figure 6: Further visual comparison of EBS with BMS [7] on cropped images, for detecting salient objects connected to the
image border (f.l.t.r): Input image, ground truth, BMS, EBSG. Right-most column shows EBSGR using encoding information
for over-segmentation and propagating high saliency values within these segments.


