TAEC: Unsupervised Action Segmentation with
Temporal-Aware Embedding and Clustering

Supplementary

1. Introduction

For additional insights into TAEC, we introduce the back-
ground of spectral clustering in Sec. 2.1 and give details
of the Viterbi decoding in Sec. 2.2. We perform more
ablation studies on comparing baseline embeddings and
clustering methods (Sec. 3.1), scaling of spatio-temporal
similarity (Sec. 3.2), cluster ordering (Sec. 3.3), decoding
strategies (Sec. 3.4). Finally, we provide more quantitative
(Sec. 3.5) and qualitative segmentation results (Sec. 3.6)
on the three datasets.

2. Method

2.1. Spectral Clustering

Background information related to Sec. 3.2.1 in the
main manuscript: Given the embedded feature sequence
e1, ez, ..., er, we build a frame-to-frame similarity graph
G € RT*T whose edge weight g(i, §), 4,5 € {1,...,T}
represents the similarity between frame ¢ and frame j.
Grouping the frames into K clusters can be interpreted
as a graph partition problem by cutting edges on G, re-
sulting in K subgraphs G1, G2, ..., G k. The normalized
cut (Ncut) problem [1] is employed to compute a balanced
partition by minimizing the energy
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where W (G, Gy,) represents the sum of edge weights
between elements in the subgraph G, and elements of
all the other subgraphs, i.e., the sum of weights of edges
to be cut. vol(Gy) is the sum of weights of edges within
the resulting subgraph G. Spectral clustering [2] is a
relaxed solution to this NP-hard minimization problem in
Eq. (1) and has shown good performance on many graph-
based clustering problems, e.g. [3, 4, 5]. Note that while
K-means operates on Euclidean distance in the feature
space and assumes convex and isotropic clusters, spectral
clustering can find clusters with non-convex boundaries.
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2.2. Frame Labeling by Viterbi Decoding

Additional explanations to Sec. 3.3 in the main
manuscript: The global cluster assignment delivers the or-
dered clusters on each video, which are aligned across all
videos. To compute the final segmentation, we use the re-
sulting ordering and decode each video into a sequence of
K temporally consistent segments. That is, we determine
the optimal label sequence ¥, 1, ,, = {Y1,n, -, YT ,n }
by re-assigning each frame to one of the temporally or-
dered clusters.

Given the embedded feature sequence ei~1, . n =
{e1,n, ..., €T, n} and the temporal order of the clusters,
we search for the optimal label sequence that maximizes
the probability p(y1~7,, ,n|€1~T,,n). Following [6], this
posterior probability can be factorized into the product
of likelihoods and the probability of a given temporal
order, i.e.,

Y1, n = AEMax p(Yy1~T, nl€1~7, ,n)
Yi~Ty,n

= argmax {11,y p(er.n|yem) - Ty (Y Y1 (e—1).n) }

Y1~Th ,n
= argmax {II;" p(esn[ye.n) - Prn(Yem|yi-1.0)}  (2)
Y1~Th,n

Here the likelihood p(€¢,»|y+,») is the probability of a
frame embedding e;,,, from the video n belonging to a
cluster. Therefore, we fit a Gaussian distribution on each
global cluster and compute the frame-wise likelihoods
with the Gaussian model, i.e.,

p(x|k) = Ni(x; pue, i) k€ {1,..., K} (3)

Dn(Yt,n|Yt—1,n) is the transition probability from label
Yt—1,n at frame ¢t — 1 to label y¢ ,, at frame ¢, which is
defined by the temporal order of clusters. We denote the
set of frame transitions defined by the temporal order of
clusters on the n-th video by On, e.g., for the temporal
orderofa - b —c—d, O, = {a = bb — c,c —
d}. The transition probability is binary, i.e.,

P (YinlYi-1,n) 4)

= 1(Yi,n = Yim1,n V Yim1,n — Yin € On).
This means that we allow either a transition to the next

cluster according to the temporal order, or we keep the
cluster assignment of the previous frame.
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Figure 1: Three baseline variants of embedding networks.

Note that in two-step clustering, we derive the tem-
poral order of clusters on each video separately, by sort-
ing the clusters on the video according to the average
timestamp. Therefore, we have an individual O,, for each
video n. On the contrary, in K-means, there is a uniform
order of global clusters for all the videos and O, is thus
the same for each video n.

The Viterbi algorithm for solving Eq. (2) is performed
in an iterative process using dynamic programming, i.e.,

P(Yi~tnl€1nt,n) = 5)

max {p(Y1~t—1,nl€1~t—1,n)
Yt,n

-plet,nlyen) - D(Wenlyi—1,n)}

The sequences that do not follow the temporal order will
be filtered out in an early stage to narrow down the search
range for the optimal label sequence. The output of the
Viterbi decoding is the optimal cluster label sequence,

Le, Y1, n-

3. Additional Results

3.1. Embedding and clustering

Further, we compare our SSTEN embedding with three
baseline variants (shown in Fig. 1): MLP temporal em-
bedding, autoencoder with MLP (AEMLP) and temporal
convolutional network (TCN), in combination with the
two clustering methods.

MLP uses three FC layers for relative timestamp pre-
diction. AEMLP uses MLP-based autencoder for both
relative timestamp prediction and feature reconstruction.
TCN deploys @ stacked dilated residual layers only for
relative timestamp prediction.

Here, we also implement the Rankloss MLP embed-
ding [7] for reference. We report the performance of
these five embeddings in Table 1.

Comparison of the five embeddings. We learn the
five embeddings (Rankloss MLP, MLP, AEMLP, TCN and
SSTEN) on the DTFV features. Here, the Rankloss MLP
(consisting of two FC layers) is trained with a ranking
loss. We use the initialization of uniform segmentation

Table 1
Comparison of combinations of embeddings and clustering
methods on Breakfast (in %).

Model K-means Two-step clustering

Feature Embedding MoF  loU F1 MoF  loU F1
Rankloss [7] 35.2 15.6 28.8 34.7 13.4 23.7

MLP 429 131 25.5 32.7 109 21.2

DTFV AEMLP 34.7 13.6 25.8 32.6 11.6 214
TCN 33.4 17.8 31.3 40.4 19.1 329
SSTEN 39.3 17.8 319 50.3 19.0 33.6
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Figure 2: Frame-to-frame similarity matrices of the embed-
ded sequences of the same video (computed by different em-

bedding networks from DTFV features) on Breakfast.

as the temporal prior to train the model with only one
iteration.

TCN and SSTEN are both networks for sequence-
to-sequence learning, while Rankloss MLP, MLP and
AEMLP are trained on individual frames. By compar-
ing the performance between these two groups in Ta-
ble 1, we see that sequence-to-sequence learning leads to
better performance, especially when combined with the
two-step clustering, which results in clusters with better
temporal consistency.

For the two-step clustering, we also plot the frame-to-
frame similarity matrices (spatial Gaussian kernel) of the
five embeddings for the same Breakfast video in Fig. 2.
The plots show that Rankloss MLP, MLP and AEMLP,
which are trained on individual frames, do not expose
an appropriate temporal structure. There are noisy block
patterns even in positions far away from the diagonal,
which results in noisy clusters and thus, leads to erro-
neous temporal orders and inferior assignment results in
the two-step clustering. The least noisy Rankloss MLP
has the highest performance among these three. On the
contrary, TCN and SSTEN embedded features, which
show a clear diagonal block structure in the similarity
graph, achieve a better performance in the two-step clus-
tering. This verifies that the sequence-to-sequence em-
bedding learning (TCN and SSTEN) and two-step cluster-
ing are a well-suited combination to address the sequen-
tial nature of frames in both processing steps of feature
embedding and clustering.

Considering K-means clustering, the merit of having
a better sequential nature of the embedded features via
sequence-to-sequence learning can also be seen from
the higher IoU and F1 scores (TCN: IoU 17.8%/F1 31.3%,
vs. SSTEN: 17.8%/31.9%), as these penalize dominating



segments and oversegmentation.

In contrast to TCN, SSTEN can preserve the spatial
layout of the input features due to the feature reconstruc-
tion via the autoencoder. By comparing TCN and SSTEN,
we see that the SSTEN embedding with feature recon-
struction leads to a boost in the MoF score. The marginal
improvement of AEMLP over MLP is due to the fact that
the MLP structure with only FC layers is not well-suited
for feature reconstruction.

Comparison between K-means and two-step clus-
tering. Considering the performance of the five embed-
dings with the two clustering methods, we see that K-
means leads to higher scores on the inferior embeddings
(Rankloss MLP, MLP and AEMLP) trained on individ-
ual frames, while two-step clustering performs better on
sequence-to-sequence learning-based embeddings (TCN
and SSTEN). When combined with the proposed SSTEN
embedding, two-step clustering outperforms K-means by
a large margin in terms of the MoF score. We also tried
applying K-means on each video separately. However,
the performance dropped significantly. K-means depends
only on the spatial distance and results in oversegmenta-
tion, which leads to erroneous temporal order on each
video and thus, an inferior global cluster assignment.

3.2. Impact of Scaling in Spatiotemporal
Similarity

We perform spectral clustering with the proposed spa-
tiotemporal similarity. Here, we analyze the impact of
the scaling factors in the spatial and temporal Gaussian
kernels, i.e., Ufpat and O‘?mp. These adjust the extent to
which two frames are considered similar to each other
and influence the clustering quality. The experiments are
conducted for SSTEN embeddings on Breakfast.

Impact of the scaling of the spatial Gaussian ker-
nel. For local scaling, we set ngat = 0405, where o; is
the distance from e; to its m-th nearest neighbor in the
feature space. The resulting segmentation performance
w.r.t. m is shown in Fig. 3. With m varying in the range
of 3 to 20, the IoU and F1 scores remain stable. There
is a range of m € {8,9} where the best MoF scores
are achieved, whereas for other scaling parameters, the
MOoF score drops. Thus, we set m = 9 for all following
evaluations.

For comparison, we also set opa to fixed values (with-
out local scaling) and report the segmentation perfor-
mance in Table 2. We achieve great results at smaller
Ospat Values (0.5 and 0.7).

However, with increasing opa: the MoF score drops
significantly, while there are only minor fluctuations in
IoU and F1. Apparently, ospa: has a large impact on the
clustering quality. The local scaling eases the effort of
tuning ospar by dynamically determining the scaling fac-
tor.
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Figure 3: Segmentation performance of the two-step cluster-
ing on SSTEN embeddings (A = 0.002) with different m (for
local scaling) on Breakfast.

Table 2

Segmentation performance of two-step clustering on SSTEN
embeddings (A = 0.002) with respect to a fixed spatial scaling
factor ogpat (Without local scaling) on Breakfast (in %).

T spat MoF loU F1
0.5 471 18.0 334
0.7 48.0 18.5 33.9

1 411 19.2 329
38.4 18.6 322
10 35.0 17.9 31.2

Impact of the scaling of the temporal Gaussian
kernel. The temporal Gaussian kernel is operated on
the temporal distance between frames in a video. With
Omp = 20", the term exp (—(si — 55)*/(20"%)) is in
the standard form of a Gaussian kernel. We set 0’ = 1/6
so that the 60" range of the temporal Gaussian is equal to
the video length (since the length of each video is normal-
ized to 1 for the relative timestamp prediction). The seg-
mentation performance with respect to ¢’ is shown in Ta-
ble 3. Apparently, o’ = 1/6 leads to the best result. Here,

Table 3

Segmentation performance of two-step clustering on SSTEN
embeddings (A = 0.002) with respect to the temporal scaling
factor o’ (U?mp = 20'2 on Breakfast (in %).

o’ ((7|2mp = 20/2) MoF loU F1

oo (w/o tmp. Gauss) 415 16.5 30.6
1/3 43.5 16.9 31.3
1/6 50.3 19.0 33.6
112 44.3 18.5 341

we also evaluate the case without the temporal Gaussian
kernel, which leads to a drop in performance. The impact
of the temporal Gaussian kernel on similarity matrices
of SSTEN embeddings can also be seen by comparing the
top and bottom rows in Fig. 6 in the main manuscript.
For example, by adding the temporal Gaussian kernel,
we decrease the similarities in Fig. 6(al) according to the
temporal distance between two frames, which leads to
clearer diagonal block structure in Fig. 6(a2). Thus, we
set o’ = 1/6 for all following evaluations.



Table 4
Impact of cluster order for two-step clustering on SSTEN em-
beddings (in %).

Breakf YTI
Order reakfast
MoF loU  F1  Edit MoF loU F1  Edit
videor 503 190 336 423 466 107 295 255
wise
uniform 535 157 322 330 407 7.7 251 203

3.3. Impact of Cluster Order

One merit of performing within-video clustering is that
we can derive the temporal order of sub-clusters for each
video separately. The video-wise individual order of clus-
ters is used to guide the Viterbi decoding, which breaks
the common assumption that clusters follow the same
temporal order in all the videos. In the following, we
verify the efficacy of the derived video-wise order of
clusters. We use the same within-video clustering re-
sult with global cluster assignment and perform Viterbi
decoding using two different temporal cluster orders:
(1) video-wise order: the temporal order of sub-clusters
is determined on each video separately; and (2) uniform
order: the uniform order is determined by sorting the
average timestamps of global clusters and is then applied
to all the videos. Table 4 reports the segmentation per-
formance (after Viterbi) with these two orders for our
SSTEN embeddings on Breakfast and YTI. To measure the
correctness of the predicted segment order, we adopt the
segmental edit distance (Edit), which is a common metric
for supervised action segmentation, e.g., [8, 9, 10, 11].
It penalizes segmentation results that have a different
segment order than the ground truth (i.e., it penalizes
out-of-order predictions, as well as oversegmentation).

From Table 4 we see that our video-wise order clearly
outperforms the uniform order except for MoF on Break-
fast. Furthermore, the edit score verifies that our derived
video-wise temporal orders are valid.

In our experiments we especially notice that the MoF
and IoU scores could act contradictory to each other,
e.g., the uniform order results in higher MoF scores (on
Breakfast) at the cost of lower IoU scores. MoF tends to
overfit on dominant classes (e.g., classes with longer ac-
tion instances) while IoU is sensitive to underrepresented
classes and penalizes segmentation results with dominat-
ing segments. Therefore, it is necessary that we consider
all metrics for evaluation, as a higher MoF score does not
always correspond to better performance in practice.

3.4. Impact of Decoding Strategies

We compare our approach, which uses Viterbi decoding,
with the Mallow model decoding that has been proposed
in [7]. The authors propose a Rankloss embedding over

all video frames from the same activity with respect to a
pseudo ground truth action annotation. The embedded
frames of the whole activity set are then clustered and
the likelihood for each frame and for each cluster is com-
puted. For the decoding, the authors build a histogram
of features with respect to their clusters with a hard as-
signment and set the length of each action with respect
to the overall amount of features per bin. After that, they
apply a Mallow model to sample different orderings for
each video with respect to the sampled distribution. The
resulting model is a combination of Mallow model sam-
pling and action length estimation based on the frame
distribution.

For this experiment, we evaluate the impact of the dif-
ferent decoding strategies on two embeddings: the Ran-
kloss embedding [7] and our SSTEN embedding. Table 5
reports the results of these two embeddings in combi-
nation with three decodings: the Mallow model, Viterbi
decoding with K-means and Viterbi decoding with two-
step clustering.

Table 5
Comparison of combinations of embeddings and decoding
strategies on Breakfast (in %).

Rankloss [7] embed. SSTEN embed.

Decoding
MoF loU F1 MoF loU F1
Mallow [7] 34.7 17.8 314 36.4 18.1 31.5
kmeans+Viterbi 35.2 15.6 28.8 39.3 17.8 319
two-step.+Viterbi 34.7 134 237 50.3 19.0 33.6

Following [7], we run 7 iterations for the Rankloss
embedding with the Mallow model. In each iteration,
the Rankloss embedding is retrained using the segmen-
tation result from the last iteration as pseudo label, and
the frame-wise likelihoods and the Mallow model are
updated.

Unlike the Mallow model, our Viterbi decoding is a
one-iteration procedure. It is operated on the embed-
ding which is trained only once. When combining with
Viterbi, we train the Rankloss model only once using the
initialized uniform segmentation as a prior. For SSTEN
with the Mallow model, we only run for one iteration,
as we do not need to train SSTEN with pseudo labels
iteratively.

Considering the Rankloss results in Table 5 we see
that combining it with the Mallow model achieves its
highest IoU and F1 scores. This is because for Viterbi de-
coding, the Rankloss model trained only one-time using
the uniform initialization as pseudo label is lacking of a
strong temporal prior. Considering SSTEN, our Viterbi
decoding with two-step clustering clearly outperforms
the Mallow model. With Mallow, the SSTEN embedding
has competitive IoU and F1 scores but significantly lower
MoF. We also tried running the Mallow model on SSTEN
embedded features for multiple iterations. However, this



resulted in a reduced number of clusters. Thus, we see
that an appropriate combination of embedding and de-
coding strategy is necessary.

To have a closer look into the Viterbi decoding, we
visualize the likelihood grids computed from global clus-
ters, as well as the resulting decoding path over time for
two videos on Breakfast in Fig. 4. It shows that the decod-
ing, which generates a full sequence of actions, is able
to marginalize actions that do not occur in the video by
just assigning only very few frames to those ones and the
majority of frames are assigned to the clusters that occur
in the video. Even if the given temporal order constrains
that the resulting K coherent segments have to follow
the fixed temporal order, the segments that actually do
not belong in the sequence will be marginalized because
the Viterbi algorithm decodes a path that maximizes the
posterior probability. Overall, it turns out that the Viterbi
decoding constrained by a temporal order performs bet-
ter than the Mallow model’s iterative re-ordering.

Making juice

Viterbi decoding path on likelihood grid

prediction

ground truth

.|
I— |

- Making fried egg

frame axis

ground truth

Figure 4: Comparison of Viterbi decoding path on the like-
lihood grid computed from the global clusters resulted from
two-step clustering on the SSTEN embeddings, for two videos
on Breakfast. The warm (red)/cool (blue) colors in the grid
indicate high/low likelihoods of a frame belonging to an ac-
tion class. It shows that the decoding assigns most frames
to occurring actions while marginalizing actions that do not
occur in the sequence by assigning only a few frames.

3.5. Quantitative Segmentation Results

3.5.1. Results of Clustering and Final
Segmentation

In order to show the advantage of two-step clustering
over K-means, when combined with the proposed SSTEN
embedding, we report both, the results of clustering (be-
fore Viterbi decoding) and the final segmentation perfor-
mance (after Viterbi decoding) on Breakfast in Table 6.
We see that the proposed two-step clustering leads to
superior performance than K-means, in terms of both
clustering (before Viterbi decoding) in most metrics, and
in terms of final segmentation (after Viterbi decoding).

Table 6

Comparison of combinations of SSTEN and different clustering
methods in terms of clustering and final segmentation after
Viterbi decoding on Breakfast (in %).

Embedding Clustering Clustering results Final results
MoF  loU F1 MoF loU F1
SSTEN K-means 27.2 135 263 393 178 319
two-step.cluster 38.6 13.7 259 503 19.0 33.6

3.5.2. Segmentation Results On Each Activity

We report the ground truth number of classes and
segmentation performance of MLP with K-means
(MLP+kmeans, our reimplementation of [12]) and TAEC
for each activity on Breakfast (Table 7), YTI (Table 8)
and 50 Salads (Table 9). The evaluation is done with
global Hungarian matching on all videos. The number of
clusters is set to the maximum number of ground truth
classes for each activity (K = max.#gt).

Table 7

Maximum number of ground truth action classes and segmen-
tation performance of MLP+kmeans (our reimplementation of
[12]) and TAEC for the 10 activities on Breakfast (in %). The
number of clusters is set to the maximum number of ground
truth classes for each activity (K = max.#gt).

Breakfast

Global Hungarian matching on all videos (K = max.#gt)

Activity K Methods MoF loU F1
coffee 7 MLP+kmeans 46.8 15.7 26.2
TAEC 35.6 15.2 249
cereals 5 MLP+kmeans 48.8 25.8 37.2
TAEC 59.0 31.4 47.7
tea ; MLP+kmeans 32.2 13.0 227
TAEC 39.2 16.3 26.1
. MLP+kmeans 40.4 21.2 36.6

milk 5

TAEC 46.7 27.3 43.5
i 8 MLP+kmeans 36.9 14.1 279
Juice TAEC 522 223 362
dwich 9 MLP+kmeans 474 15.0 25.3
sandwie TAEC 53.7 198 335
scrambled e 12 MLP+kmeans 345 10.8 19.9
88 TAEC 481 152 283
fried 9 MLP+kmeans 36.4 115 24.5
riedese TAEC 491 174 305
salad 8 MLP+kmeans 347 7.8 27.5
TAEC 42.0 15.2 34.0
ancake 14 MLP+kmeans 57.4 8.6 19.2
P TAEC 582 192 358
All ~ MLP+kmeans 429 13.1 255
TAEC 50.3 19.0 33.6




Table 8

Maximum number of ground truth action classes and the
segmentation performance of MLP+kmeans (our reimplemen-
tation of [12]) and TAEC for the 5 activities on YTI (in %). The
number of clusters is set to the maximum number of ground
truth classes for each activity (K = max.#gt).

YouTube Instructions

Global Hungarian matching on all videos (K = max.#gt)

MoF loU F1 MoF loU
Activity K Methods w/o w/o w/o w w
bkg bkg bkg bkg bkg
e 10 MLP+kmeans 40.9 10.4 34.2 1.9 9.5
cottee TAEC 428 105 266 124 9.6
change tire11 MLP+kmeans 459 17.2 34.0 24.7 15.8
ange tir TAEC 586 200 372 315 184
ump car 12 MLP+kmeans 30.6 45 24.4 5.1 4.1
Jump TAEC 343 62 264 57 5.8
7 MLP+kmeans 34.4 9.9 31.2 15.0 8.6
cpr TAEC 380 79 333 166 69
oot . MLP+kmeans ~ 29.8 72 231 101 6.4
po TAEC 35.8 7. 24 121 63
All MLP+kmeans 39.4 9.9 29.6 14.4 9.7
TAEC 466 107 295 170 105

Table 9

Maximum number of ground truth action classes and the
segmentation performance of MLP+kmeans (our reimplemen-
tation of [12]) and TAEC for the single activity on 50 Salads
(in %). The number of clusters is set to the maximum number
of ground truth classes for each activity (K = max.#gt).

50 Salads

Global Hungarian matching on all videos (K = max.#gt)

Activity K Methods MoF loU F1
eval 12 MLP+kmeans 379 24.6 40.2
TAEC 48.4 26.0 44.8
salad
mid 19 MLP+kmeans 29.1 15.7 23.4
TAEC 26.6 149 23.4

3.6. Qualitative Segmentation Results

We show the qualitative results of clustering and final
segmentation on 7 composite activities: making cereals
(Fig. 5), making milk (Fig. 6), making juice (Fig. 7), making
fried egg (Fig. 8), making pancake (Fig. 9) on Breakfast,
changing tire (Fig. 10) on YTI and making salad (Fig. 11)
on 50 Salads (eval 12 classes). The mapping between clus-
ter labels and ground truth classes is done with global
Hungarian matching on all videos. The number of clus-
ters is set to the maximum number of ground truth classes
for each activity (K = max.#gt).

For each activity, we visualize the results of 10 videos.
For each video, the 3-row-group displays the ground
truth (1st row), TAEC (2nd row), MLP+kmeans [12] (3rd
row).
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Figure 5: Qualitative results of clustering and final segmentation of 10 making cereals videos on Breakfast. For each video, the
3-row-group displays the ground truth (1st row), TAEC (2nd row), MLP+kmeans [12] (3rd row). The mapping between cluster
labels and ground truth classes is done with global Hungarian matching on all videos. The number of clusters is set to the
maximum number of ground truth classes for each activity (K = max.#gt).
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Figure 6: Qualitative results for 10 making milk videos on Breakfast.
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Figure 7: Qualitative results for 10 making juice videos on Breakfast.



Making fried egg
Mempty lpour oil  take plate lltake eggs' fry egg [lbutter pan [Hadd salt [crack egg M put egg2plate
Clustering result Final result

i

.hjkl wlLl

Figure 8: Qualitative results for 10 making fried egg videos on Breakfast.
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Figure 9: Qualitative results for 10 making pancake videos on Breakfast.

Changing tire
[l bke Mget things out [llstart loose [ jack up| unscrew wheell [llbreak on [lltight wheel
put wheel unscrew wheel2 [ screw wheel [l jack down [llput things back
Clustering result Final result

. I N S SE—
vid 6 [T A" LI

j
:

via s | s e = =

Figure 10: Qualitative results for 10 changing tire videos of the YouTube Instructions dataset. Similar to the Breakfast
illustrations, for each video the 3-row-group shows the ground truth (1st row), TAEC (2nd row), and MLP+kmeans [12] (3rd
row).
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Figure 11: Qualitative results for 10 making salad videos on the 50 Salads dataset (from the eval-level, 12 action classes). Again,
for each video the 3-row-group shows the ground truth (1st row), TAEC (2nd row), and MLP+kmeans [12] (3rd row).
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